

MATHEMATICAL ONCOLOGY ALEXANDER ANDERSON, PHD MOFFITT CANCER CENTER

March 31, 2023

Endorsed by

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER Conquering Thoracic Cancers Worldwide Accredited by

$f(A) = \int f(A) = \beta n - \delta n f + \int f(A) = \delta n - \delta n + \int f(A) = \delta n - \delta n + \int f(A) = \delta$

@ARA ANDERSON

Alexander R. A. Anderson Integrated Mathematical Oncology Moffitt

Cancer Center alexander.anderson@moffitt.org http://labpages.moffitt.org/andersona

Integrated Mathematical Oncology

Unified goal: To better understand, predict and treat cancer

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER ring Thoracic Cancers Worldwig

Integrated Mathematical Oncology

I AM A MODELER: Make predictions Answer questions Generate hypothesis YOU ARE A MODELER: •Biological (e.g. Cell culture) Mathematical (e.g. Differential equations) Clinical (e.g. Imaging)

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

Integrated Mathematical Oncology

Preclinical = Homogeneity Experimental systems: in vitro & in vivo Error bars should minimized Reproducibility is central to research **Clinical = Heterogeneity** Within individual tumours Across patients with the same cancer •Diversity in age, stage, health & history etc

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

ATLANTIC HURRICANE TRACKS

PREDICT THE FUTURE

20

NICARAGUA

BERMUDA

MATHEMATICAL MODELS CAN

CIMC

PUERTO RICO

ADVANCES IN TREATMENT SCHEDULING

- Over the last 60 years treatment scheduling has evolved significantly
- You might not know that mathematical modeling played an important role in much of it
- With ever increasing drug options, dosing, timing and combination needs modeling more than ever.

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

MAXIMUM TOLERATED DOSE THERAPIES FAIL BECAUSE OF RESISTANCE

Sandy Anderson

Bob Gatenby

"To develop and deploy the next generation of truly personalized cancer therapy, through the integration of predictive mathematical models, patient data and evolutionary principles"

Solutionary Otherapy

PRINCIPLES OF ADAPTIVE THERAPY

MTD Sensitive Resistant MED

Evolution of resistance is inevitable with MTD

INTERNATIONAL ASSOCIATION FOR THE STUDY F LUNG CANCER

Speaker: Alexander R.A Anderson, PhD, Moffitt Cancer Center

Sensitive cells suppress growth of resistant clones

@TLCconference #TexasLung23

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER ering Thoracic Cancers Worldwide

RESISTANCE MAY HAVE A COST

Different cell lines exhibit different costs of resistance

INTERNATIONAL ASSOCIATION

FOR THE STUDY F LUNG CANCER

ADAPTIVE PROSTATE CANCER TRIAL (NCT02415621)

If response exceeds >50% reduction in PSA, withdraw therapy until PSA reaches pre-treatment level

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

ABIRATERONE TRIAL RESULTS

- Improved median TTP (33.5 months) and median OS (58.5 months) (Hazard ratio, 0.20)
- Subjects received no abiraterone during 46% of time on trial
- 4 patients remain on trial with stably cycling disease (53-70 months)

Nat Comms. 2017, doi.org/10.1038/s41467-017-01968-5

Trial Cohort ■ Off Abiraterone On Abiraterone \times Scan Progression 2 3 5 4 Years **Contemporaneous Cohort** 0005 0007 0008 00140012Off AbirateroneOn Abiraterone × Scan Progression 70 0002 2 3 5 Years

EVOLUTIONARY CLINICAL TRIALS

NCI TRIAL		TITLE
NCT0565182	28	Adaptive vismodegib in advanced basal ce
NCT051894	57	1st Strike, 2nd Strike Therapies for High Ri
NCT0241562	21	Adaptive Abiraterone Therapy for Metastati
NCT0351119	96	Intermittent Androgen Deprivation Therapy
NCT0354396	69	Adaptive BRAF-MEK Inhibitor Therapy for A
NCT0438883	39	Evolutionary Therapy for Rhabdomyosarco
NCT0434336	65	Generating Novel Therapeutic Strategies B

INTERNATIONAL ASSOCIATION

FOR THE STUDY OF LUNG CANCER Speaker: Alexander R.A Anderson, PhD, Moffitt Cancer Center

Il carcinoma

isk Metastatic Castration Sensitive Prostate Cancer

ic Castration Resistant Prostate Cancer

for Stage IV Castration Sensitive Prostate Cancer

Advanced BRAF Mutant Melanoma

oma

Based on Evolutionary Tumor Board

EVOLUTIONARY TUMOR BOARD (ETB)

Past Tx and responses abstracted

Clinical trial to implement the ETB (NCT04343365)

- Different patients from different cancers every month \bullet
- Pre-board discussion with IMO 1-2 weeks before ETB \bullet
- Multi-model approach driven by eco-evolutionary principles
- Integrated decision making process

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

Speaker: Alexander R.A Anderson, PhD, Moffitt Cancer Center

Christine Chung

Damon Reed

PATIENT ETB-003 (HEAD AND NECK)

$$\begin{split} \dot{T}_{i} &= \begin{pmatrix} Growth \\ \hat{\gamma}_{i} \end{pmatrix} - \underbrace{\sum_{j} \delta_{j} E_{j} D_{j}}_{j} \end{pmatrix} T_{i} \\ \dot{E}_{j} &= \begin{pmatrix} \underbrace{Sensitization}_{s_{j}(1 - E_{j})(1 - D_{j})} - \underbrace{Resistance}_{r_{j}D_{j}} \end{pmatrix} E_{j} \\ D_{j} &= D_{j}(t) \end{split}$$

Approach

- Fit base growth rate (γ_i) from target lesions •
- Drug efficacy (∂_i) fit under therapy •
- Rate of resistance (r_i) fit in combo with efficacy ۲
- Resensitization rates (s_i) will mostly come from historical data •

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

HISTORICAL PATIENTS CONSTRAIN MODEL

Approach

- Retrospectively apply ETB workflow to historical cohorts in the same disease
- Collect parameter ranges for growth rates, drug efficacy, rates of resistance and sensitization
- Use these ranges prospectively for new patients on the ETB

INTERNATIONAL ASSOCIATION

FOR THE STUDY OF LUNG CANCER onquering Thoracic Cancers Worldwid Speaker: Alexander R.A Anderson, PhD, Moffitt Cancer Center

@TLCconference #TexasLung23

PHASE I TRIALS

- Phase I for imaginary number \bullet
- Use historic trial data
- Calibrate model to outcomes
- Uses Kaplan-Meier & waterfall plots
- Generate a Cohort of virtual patients
- Captures uncertainty
- Ideal for testing & optimization

Kim E. et al. Eur J Cancer. 2016 Nov;67:213-222. doi: 10.1016/j.ejca.2016.07.024.

INTERNATIONAL ASSOCIATION

FOR THE STUDY OF LUNG CANCER

ring Thoracic Cancers Worldwid

Virtual trials in virtual patients

Is this how we will accelerate progress in personalised treatments?

DECISION SUPPORT FOR ALL THERAPIES

- Comparison of different therapies based on historical precedent can suggest outcome ranges
- In this case, both chemotherapy options are not expected to improve outcomes over continuation of targeted therapy
- After third scan, despite continued response, model suggests switching to chemotherapy soon

MedRxiv 2023, doi: 10.1101/2023.01.18.23284628

INTERNATIONAL ASSOCIATION

FOR THE STUDY OF LUNG CANCER

CONCLUSIONS

- Treatment selects for resistant phenotypes
- Timing matters but so does space
- Smart sequential therapies can exploit evolution
- Resistant phenotypes may have a cost
- Dynamic measures of burden are critical
- Patients should be their own control
- Evolutionary therapies: new use for old drugs

Jill Gallaher

Mark Robertson-Tessi

Robert Gatenby

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

Speaker: Alexander R.A Anderson, PhD, Moffitt Cancer Center

Joel Brown

Damon Reed

Christine Chung

PSOC CSBC

#TexasLung23

"In the long history of humankind those who learned to collaborate and improvise most effectively have prevailed"

