

OVERCOMING IMMUNOTHERAPY RESISTANCE IN NSCLC

Sheena Bhalla, MD

UT Southwestern Medical Center

March 31, 2023

Endorsed by

IASLC INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

Accredited by

Presented by

- Briefly review definitions and key mechanisms of immunotherapy resistance
- Highlight promising approaches under study for overcoming immunotherapy resistance in advanced NSCLC, including strategies targeting the VEGF axis and TAM receptors

Despite survival and clinical benefits of immunotherapy in NSCLC, resistance unfortunately develops in most patients

KEYNOTE-189: ITT population

KEYNOTE-407: ITT population

Garassino et al., J Clin Oncol 2023; Novello et al., J Clin Oncol 2023

Definitions of immunotherapy resistance are not standardized and may vary among clinical trials

SITC definitions of IO resistance in advanced disease setting

Resistance phenotype	Drug exposure requirement	Best response
Primary resistance	≥6 weeks	PD; SD for <6 months
Secondary (acquired) resistance	≥6 months	CR, PR, SD for >6 months

Kluger HM et al., J Immunother Cancer 2020

Mechanisms of IO resistance are complex and multifactorial

- 1 Changes in tumor neoantigen presentation
- 2 Alterations in oncogenic signalling pathways

3 and 4 – Changes towards immunosuppressive TME via decrease in pro-inflammatory mediators and/or increase in anti-inflammatory mediators

5 – Dependence on alternate immune checkpoints

Hu-Lieskovan et al., Future Oncol 2021

🝠 @TLCconference #TexasLung23

Strategy	Selected targets or mechanisms under study		
Immune inhibitory agents	CTLA-4, TIGIT, LAG-3, TIM-3		
Immune stimulatory signals	OX-40, CD40, ICOS		
T cell priming	TIL therapy, CAR-T therapy, personalized vaccines		
Cytokines	IL-2, IL-15		
VGEF axis	Multiple VEGF monoclonal Abs & small molecules		
Oncogene pathways	STAT3, RAF, MEK, AXL, PI3K, c-MET		
Other TME targets	Adenosine, arginase, HDAC, RORy, CDK4/6		
Microbiome-based therapy	E. gallinarum, Lactococcus lactis		

Passaro et al., J Clin Oncol 2022

VEGF may contribute to immunosuppressive TME and resistance to immune checkpoint inhibitors

Lee et al., Exp Mol Med 2020

Preclinical data has led to study of many immunotherapy + VEGF agent combinations

VEGF agent	Treatment strategy	NCT identifier	
Ramucirumab	Atezolizumab + ramucirumab	NCT03689855 (phase II)	
	Pembrolizumab + ramucirumab (v SOC)	NCT03971474 (phase II) NCT05633602 (phase III)	
	Pembrolizumab + ramucirumab + docetaxel	NCT04340882 (phase II)	
Lenvatinib	Pembrolizumab + lenvatinib (v docetaxel)	NCT03976375 (phase III)	
Nintedanib	Nivolumab +/- ipilimumab + nintedanib	NCT03377023 (phase I/II) NCT04046614 (phase I/II)	
Sitravatinib	Nivolumab + sitravatinib (v docetaxel)	NCT03906071 (phase III)	
Axitinib	Avelumab + axitinib	NCT03472560 (phase II)	
Ivonescimab (AK112)	Anti-PD-1/VEGF bi-specific antibody	NCT04736823 (phase II)	

Passaro et al., J Clin Oncol 2022

Pembrolizumab + ramucirumab may have role in immunotherapy resistance setting for NSCLC

- Median OS for pembro + ram 14.5 months versus SOC 11.6 months (HR=0.69)
- 45 of 67 pts in SOC received docetaxel + ram
- No significant differences in PFS

INTERNATIONAL ASSOCIATION

FOR THE STUDY OF LUNG CANCER

IASLC

9 @TLCconference #TexasLung23

Although analysis is limited by small sample size, benefit noted among sub-groups2

- Benefit among squamous/mixed histology
- HRs by PD-L1 status • were similar
- Co-mutations did not • affect OS improvement

	RP Events/n	SOC Events/n	HR (80% CI)	Ρ
Histology				
Nonsquamous	27/40	27/39	0.95 (0.67 to 1.35)	.43
Squamous/mixed	18/29	24/28	0.43 (0.28 to 0.65)	.005
PD-L1				
0	21/29	21/26	0.74 (0.50 to 1.10)	.16
1-49	11/21	15/22	0.61 (0.36 to 1.02)	.11
≥ 50	8/12	12/16	0.68 (0.38 to 1.21)	.20
≥ 1	19/33	27/38	0.66 (0.45 to 0.97)	.08
ТМВ				
< 10	23/32	28/38	0.76 (0.52 to 1.10)	.17
≥ 10	18/33	20/25	0.57 (0.37 to 0.86)	.04
Biomarker				
TP53	31/48	35/48	0.73 (0.53 to 1.00)	.10
CDKN2A	18/27	21/24	0.54 (0.35 to 0.82)	.03
KRAS	12/21	13/16	0.63 (0.38 to 1.06)	.13
STK11	4/7	10/10	0.23 (0.10 to 0.54)	.01
KEAP1	1/3	7/10	0.38 (0.10 to 1.49)	.18
Prior Treatment				
IO + Chemotherapy				
combination	20/32	32/42	0.84 (0.58 to 1.21)	.27
Chemotherapy→IO	25/36	18/23	0.45 (0.30 to 0.68)	.006
PS				
0	15/23	8/9	0.54 (0.30 to 0.96)	.08
1	30/46	43/58	0.76 (0.56 to 1.02)	.12
Overall	45/69	51/67	0.69 (0.51 to 0.92)	.05

2.0 0.1 0.5 1.0 \leftarrow RP is better SOC is better \rightarrow

Reckamp et al., J Clin Oncol 2022

@TLCconference #TexasLung23

Pragmatica-Lung is upcoming streamlined, real-world clinical trial to study pembrolizumab + ramucirumab in phase III setting

Condensed, simplified format to encourage rapid enrollment and access to diverse patient population

•

The Cancer Letter 2022; NCT05633602

@TLCconference #TexasLung23

No tissue specimens, protocol-required lab tests or disease assessments, no reporting of concomitant medications, and limited adverse event reporting

Ivonescimab (AK112) is PD-1/VEGF bispecific antibody demonstrating preliminary activity in advanced, IO-resistant NSCLC

Phase II trial of AK112 + chemotherapy in patients with advanced NSCLC

AK112 + Pem 500 mg/m²

(squamous) + carboplatin

AK112 + Pem 500 mg/m²

+ carboplatin AUC 5

mg*min/ml

(non-squamous) or

AUC 5mg*min/ml

paclitaxel 175 mg/m²

Cohort 2: EGFR+ NSCLC with POD after prior EGFR-TKI

Cohort 1: 1L NSCLC

without EGFR/ALK

alterations

Cohort 3: NSCLC With POD after platinum-based chemo + anti-PD-1

AK112 + docetaxel 75 mg/m²

Zhao et al., ASCO Annual Meeting 2022

Activation of TAM receptors such as AXL may contribute to an immunosuppressive TME

- TAM receptors (Tyro3, AXL, MerTK) upregulate pro-tumorigenic functions and have prominent role in immunomodulation including efferocytosis and suppression of innate immune inflammatory response
- Murine lung cancer models show that AXL inhibition + ICI promotes infiltration of CTLs and NK cells into TME, increasing anti-tumor activity

Bhalla et al., Curr Oncol Rep (in press); Guo et al., Oncotarget 2017

Clinical trials of TAM targeted agents + ICIs in advanced NSCLC are ongoing

Sitravatinib + nivolumab

- Ph 2 trial in NSQ NSCLC pts after prior ICI: ORR 16%, PFS 6m, OS 15m
- Grade 3/4 TRAEs 60% with discontinuation rate due to any AE ~30%
- Awaiting Phase 3 SAPPHIRE data

Cabozantinib + atezolizumab

 Ph 3 trial in NSCLC pts after prior ICI: did not meet primary endpoint of OS

Bemcentinib + pembrolizumab

- Ph 2 trial in NSQ pts after prior chemo±ICI: ORR 11.1%, PFS 6.2m, OS 13m
- AXL expression as biomarker? AXL TPS > 5: mOS 14.8m (ORR 21.9%) versus AXL TPS < 5: mOS 9.9m
- AXL inhibition may restore response to PD-1 blockade in STK11 mt NSCLC, prompting 1st line phase 1/2 trial

Solange et al. J Immunother Cancer 2022; Leal et al., Ann Oncol 2021; Krebs et al., J Thorac Oncol 2021; Li et al., Cell Rep 2022

Take home points

- Resistance to immunotherapy is an unfortunate occurrence for most patients with advanced NSCLC
- Definitions for primary and secondary immunotherapy resistance vary among trials; future studies should incorporate standardized, consensus-based definitions
- Mechanisms of resistance to immunotherapy are complex and multifactorial, with an immunosuppressive TME being one of the key mechanisms of resistance
- Promising ICI combination approaches may overcome an immunosuppressive TME and augment antitumor responses, such as strategies targeting the VEGF axis and TAM receptors
- Further collaborative efforts to understand distinct mechanisms of immunotherapy resistance and identify potential biomarkers are needed to guide future clinical trials

