

REFINING EGFR CLASSIFICATION

John V. Heymach, MD, PhD Chair, Thoracic/Head and Neck Medical Oncology David Bruton, Jr. Chair in Cancer Research MD Anderson Cancer Center

April 1, 2023 No foolin'

Endorsed by

Accredited by

Presented by

Immune and genomic landscape of NSCLC 2023

ASSOCIATION

FOR THE STUDY LUNG CANCER

Classification of Atypical EGFR Mutations

Speaker: John V. Heymach, MD, PhD, MD Anderson Cancer Center

MDA EGFR/HER2 team

Yasir Elamin

Preclinical studies of **EGFR** and HER2 **mutations**

Robichaux, PhD

Jackie

EMT, rewiring, beta blockers

Monique

Nilsson, PhD

Exon 20 EGFR and HER2 studies; TKI resistance LCT studies

EGFR, HER2, and **MET clinical** studies, TKI resistance

Xiuning Le,

MD, PhD

Moffitt Jhanelle Gray, MD

Atypical EGFR mutations

Not shown molecular modeling, drug development investigators: Jason Cross, Paul Leonard, Phil Jones, Shuxing Zhang et al

MD

Speaker: John V. Heymach, MD, PhD, MD Anderson Cancer Center

@TLCconference #TexasLung23 The challenge: most studies focus on classical mutations (exon 19 deletion, L858R). But there are more than 100 mutations we see in the clinic, most without approved TKIs

Exon 18	Exon 19 A750 1759del ins PN	E	Exon 21	
		A767 V769dupASV	S768I	L858R T790M C797S
	Ex19dol T790M	A767 S768insTLA	S768I L858R	L 858R T790M L 718O
E709A L858R	Ex10del T700M 718\/	S768 D770dupSVD	S768I L861Q	L858R T790M L718V
	Ex19del T790M C718V	S768 D770dupSVD L8580	S768I V769L	1.833E
	EXTSOL 1790W G7243	S768 D770dupSVD R958H	S768I V774M	
E709A	E746 A750del A647T	S768 D770dupSVD V769M	H772D T700M	
E709A G719A	E746 A750dol P675W	V769 D770insASV		
E/09A G/19S	E746 T751dol inc\/ \$7680	V769 D770insGSV		
E709 07400	Ex19del C797S	V769 D770insGVV		
E709 G719S	Ex19del C796S	V769 D770insMASVD	S784F	
L718Q T790M	Ex19del L 792H	D770 N771insNPG	T790M	
G719A		D770 N771insSVD	S811F	
G719A D761Y	Ex19del 16541	D770del insGY		
G719A L861Q	E749 A750del A647T	D770 N771 insG		L858R R324H
G719A R776C	E749 A750del L41W	D770 N771 insY H773Y		L858R R324L
G7194 T790M	E749 A750del R451H		_	L858R S784F
C710A S768	Ex19del E746 A750del	N771G	_	1 858R S784Y
C710C \$7691	K754F	N771dupN	_	1 858R 1725M
G719C S766	L747 E749del A750P	N771dupN G724S	_	L858R V834L
G7195	L747 T751del L861Q	N771 P772insHH		L861Q
G7195 L681Q	Ex19del T790M C797S	N771 P772insSVDNR	_	L861R
G7195 57681		N771 P773insDNP		S768I T790M
S720P		H773 V774 insNPH		1 858P T700M \/8431
G724S	I740dupIPVAK	N773 V774insAH		
G724S Ex19del	D761N	H773dupH		
G724S L858RI		H774 C775insHV		L836K 1790W
G724S T790M	1751 1759 delinsN	V774 C775insPR		L858R L792H
T725M	K757M L858R	A763insFQEA		L858R T854S
L718Q	K757R	A763insLQEA		L858R C797S
L718Q Ex19del	1 747 S752del A755D	G779E		
L719Q L858R	1747P		—	
L718V	17475	V769L	—	
L718V ex19del	1747S1858B	V769M	—	
L718V L858R	1 747S V744M	V774M		

R776C

R776H

E709 T710del insD S22R

S752 I759del V769M

Classification by alphabetical order

Classification by frequency

Speaker: John V. Heymach, MD, PhD, MD Anderson Cancer Center

Classification by structure/function

Speaker: John V. Heymach, MD, PhD, MD Anderson Cancer Center

How did we come to our current classification of EGFR mutations?

Can't we just give everyone a third-generation TKI like osimertinib?

Time to treatment failure on osimertinib

- Significant heterogeneity in response to osimertinib
- One TKI unlikely to be optimal for all mutations
- Not practical to do trials for >100 individual mutations
- No trials cover the unmet need of large group of atypicals for which no drugs are approved
- Are there more useful way for classifying atypical EGFR mutations to improve TKI selection?

Robichaux et al 2021 Nature

🝠 @TLCconference #TexasLung23

There is heterogeneity in drug sensitivity within exons

Exon based approach may not be optimal, so is there a better approach?

Robichaux et al 2021 Nature

Speaker: John V. Heymach, MD, PhD, MD Anderson Cancer Center

Exon based grouping significantly reduces heterogeneity <u>only</u> for the exon 20 group, but not other exons

-Variance calculated for drug sensitivity within each group (lower variance=more homogeneous group)

** p<0.001; grouping yields significantly less heterogeneity than expected at random based on full set of mutations.

P value calculated by randomly permuting group labels x 1000 datasets, then calculating the proportion of permuted variances less than the original variance within a group. Smaller p value indicates higher likelihood that variance is lower than expected at random.

Exon-based groups

Exons 18, 19, 21: not significantly better than random group selection

Standard error of the variance is estimated using bootstrap method.

Structure/function-based clustering better predicts TKI sensitivity than exon-based groups

Robichaux et al 2021 Nature

Speaker: John V. Heymach, MD, PhD, MD Anderson Cancer Center

@TLCconference #TexasLung23

Structure/function based classification reduces significantly reduces heterogeneity for all subgroups except T-790M-like and improves upon exon-based classification

-Variance calculated for drug sensitivity within each group (lower variance=more homogeneous group)

** p<0.001; grouping yields significantly less heterogeneity than expected at random based on full set of mutations.

P value calculated by randomly permuting group labels x 1000 datasets, then calculating the proportion of permuted variances less than the original variance within a group. Smaller p value indicates higher likelihood that variance is lower than expected at random.

Standard error of the variance is estimated using bootstrap method.

IASLC

INTERNATIONA

Speaker: John V. Heymach, MD, PhD, MD Anderson Cancer Center

Classical-like							
 P-loop Hinge Hinge Of the second sec	ac-helix ac-						
L858R Exon 19 deletions S720P L861Q/R S811F	K754E T725M L833F/V A763insFQEA A763insLQEA						
Sensitive & Selective Third-ge Second-g First-ge Exon20in	eneration generation eneration as-specific						

Structure/function-based clustering better predicts TKI sensitivity than exon-based groups

Exon-

based

group

22

11

23

23

25

25

34

6

Robichaux et al 2021 Nature

Which classification better predicts drug sensitivity?

<u>P</u>-loop and <u>a</u> <u>c</u>-helix <u>C</u>ompressing (PACC) mutations are predicted to the impact ATP-binding pocket and have enhanced sensitivity for 2nd gen TKIs

- Proximal to drug binding pocket
- Direct or indirect impact on drug binding via moderate displacement of P-loop and/or αC-helix

EGFR G719S

Robichaux et al 2021 Nature

@TLCconference #TexasLung23

Patients with PACC mutations have prolonged TTF with 2nd gen TKIs compared to 1st or 3rd gen TKIs

Robichaux et al 2021 Nature

y @TLCconference #TexasLung23

Structure/function-based groups identifies larger subgroup of patients who benefit from afatinib treatment than exon-based groups

Exon-based groups

Structure/function-based groups

Structure/function-based groups identifies larger subgroup of patients who benefit from afatinib treatment than exon-based groups

Duration of Afatinib Treatment

<image/>	Ce TT90M-like Image: Set of the set of th		 P-loop αC-helix compression P-loop αC-helix P-loop αC-helix P-loop αC-helix Proximal to drug binding pocket Direct or indirect impact on drug binding via moderate displacement of P-loop and/or αC-helix 		 Exon 20 loop insertions 	
L858R K754E Exon 19 deletions T725M S720P L833F/V L861Q/R A763insFQEA S811F A763insLQEA	T790M-3S Classical/T790M E G719X/T790M L L747_K745delinsATSPE G S768I/T790M C	T790M-3R Ex19del/T790M/L792H L858R/T790M/L718X Classical/T790M/C797S	Primary G719X S768I L747P/S E709_T710del insD V769L	Acquired C797S L792H G724S L718X T854I	Ex20ins-NL S768dupSVD A767dupASV D770insNPG D770del insGY	Ex20ins-FL H773insNPH H773dupH V774insAV V774insPR
Sensitive & Selective Third-generation Second-generation First-generation Exon20ins-specific	T790M-3S Third-generation PKCi ALKi Second-generation First-generation	T790M-3R PKCi ALKi Third-generation Second-generation First-generation	Second-ge First-gen Ex20ins-s Third-gen	neration eration specific eration	Ex20ins-NL Ex20ins-specific Second-generation Third-generation First-generation	Ex20ins-FL Ex20ins-specific Second-generation Third-generation First-generation

EGFR exon 20 mutations occur in ~2-3% of NSCLC and in 20 other tumor types

Common EGFR mutations

EGFR Exon 20 mutant cancers

EGFR exon 20 mutant NSCLC: ~2.3% of NSCLC

Robichaux et al 2018 Nature Medicine

Low response rates for 1st-2nd gen TKIs for EGFR exon 20 insertions

Robichaux et al 2018 Nature Medicine; Heymach WCLC 2018

Structural features of classical and exon 20 mutant EGFR: insertion induces steric hindrance

Poziotinib is a small, flexible, halogenated quinazoline based TKI

Robichaux et al WCLC 2016

Poziotinib specifically inhibits EGFR Exon 20 insertions over T790M

6203: Poziotinib overcomes de novo resistance of EGFR exon 20 insertion mutations in NSCLC- JP Robichaux et al.

Poziotinib for EGFR exon 20 mutations: MDA study

Elamin et al, Cancer Cell 2022

@TLCconference #TexasLung23

EGFR exon 20: helical, near-loop, and far-loop insertions

Elamin et al, Cancer Cell 2022

Poziotinib is more effective for near-loop than far-loop insertions in EGFR exon 20

Cell lines: near loop <IC50 than far

Near loop

@TLCconference #TexasLung23

Far loop

Amivantamab: a bispecific EGFR/MET mab with multiple potential MOAs

Yun et al, Cancer Discovery 2021

@TLCconference #TexasLung23

CHRYSALIS: Amivantamab for EGFR exon 20ins NSCLC progressing on prior platinum

Park et al, JCO 2021

Activity of mobocertinib in platinum-pretreated patients with EGFR exon 20 insertion NSCLC

Sept.15, 2021: FDA granted accelerated approval to mobocertinib for EGFR exon 20 after progression on prior platinum

Zhou et al JAMA 2021

Differential *in vitro* sensitivities in near- vs. far-loop for different TKIs: all but mobocertinib have near- bias (BaF3 models)

Le et al, in review

Clinical responses in near- vs. far-loop insertions confirms near-bias for poziotinib but not mobocertinib

EXCLAIM trial (n=84)

Le et al, in review

Speaker: John V. Heymach, MD, PhD, MD Anderson Cancer Center

@TLCconference #TexasLung23 The bottom line: different approaches are needed to tailor lung cancer therapies- one size does not fit all!!

- For <u>atypical EGFR mutations</u>, a structure/function approach predicts drug response better than standard exon-based strategies.
 - -Even within EGFR exon 20 loop insertions, near-loop and far-loop insertions have differential responses to some drugs
- With our refined classification, we expect to enter an era of new studies and new treatment options for atypical EGFR mutations.

P-loop αC-helix

Direct or indirect impact on drug bi

Stable Disease

and/or aC-helix

Acknowledgments

Heymach Lab

Monique Nilsson Simon Heeke Hibiki Udagawa Yu Qian Xiang Zhang Ren Xiaoyang Alissa Poteete Fahao Zhang Yan Yang Jayanthi Gudikote Sonia Patel YouHong Fan Jungin He Limei Hu Thiru Arumugam Xiaoxing Yu

THNMO Faculty

Xiuning Le Yasir Elamin Hai Tran Ferdinandos Skoulidis

<u>TRO</u>

James W. Welsh Quynh-Nhu Nguyen Saumil Gandhi Joe Chang Percy Lee

<u>TS</u>

Steve Swisher Ara Vaporciyan Boris Sepesi

MDACC

Jason Cross Jing Wang Lixia Diao Ming Jin Ha Bingliang Fang Phil Jones

Moffitt Jhanelle Gray

MSKCC Daniel Gomez

Lung SPORE SU2C KRAS Dream Team Mark Foundation MD Anderson Lung Cancer Moon Shots Program NIH-R01CA247975 CPRIT-IIRA RP200150 NIH/NCI R01CA234183 NIH/NCI R01CA190628 P30 CA016672

@TLCconference #TexasLung23