

CURRENT AND FUTURE PRACTICE FOR MET EXON 14 SKIPPING

Paul K. Paik, MD Memorial Sloan Kettering Cancer Center

April 1, 2023

Endorsed by

IASLC INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

Accredited by

Presented by

Overview

- MET exon 14 skipping mutations and patient characteristics
 - Unique population
 - Different testing methodologies
- MET inhibitors in patients with MET exon 14 skipping mutations
 - Efficacy and safety
 - Quality of life
 - Resistance mechanisms
- What should the standard of care be for these patients?

MET exon 14 skipping: the newest (arguably) actionable oncogenic alteration

MET Background

- MET receptor tyrosine kinase (RTK) is a proto-oncogene with roles in proliferation, apoptosis, and motility/invasion¹
- Gain of function alterations include amplification and protein overexpression²
- These have been previous targets in lung cancer with no significant success (overexpression) or modest success (high amplification)^{2,3}
- Mutations in the MET exon 14 RNA splice acceptor and donor sites lead to exon skipping, deletion of the juxtamembrane domain, and loss of Cbl E3-ligase binding to the resultant aberrant MET protein¹
- MET exon 14 mutations are oncogenic in preclinical models of SCLC, NSCLC and gastric cancer, and are sensitive to MET inhibition^{1,4}

1. Kong-Beltran M, et al. Cancer Res. 2006;66(1):283-289. 2. Spigel DR, et al. J Clin Oncol. 2017;35(4):412-420. 3. Camidge DR, et al. ASCO 2016; Abstract 9070. 4. Pilotto S, et al. Ann Transl Med. 2017;5(1):2.

MET exon 14 splice site mutations engender alternative splicing

Speaker: Paul K. Paik, MD, Memorial Sloan Kettering Cancer Center

TCGA Identifies Aberrant Exon 14 Deleted MET RNA Transcripts

Cancer Genome Atlas Research Network. Nature. 2014;511(7511):543-550.

MSK IMPACT Detects Relative Abundance of MET Exon 14 Splice Site Mutations

MET Exon 14 Splice Site Mutations Are Heterogeneous

Paik PK, et al. *Cancer Discov*. 2015;5(8):842-849.

MET Exon 14 Splice Site Mutations Are Associated With High MET Protein and Low Exon 14 mRNA Expression

Paik PK, et al. Cancer Discov. 2015;5(8):842-849.

Speaker: Paul K. Paik, MD, Memorial Sloan Kettering Cancer Center

How Should We Look for *MET* Exon 14 Skipping Mutations? DNA vs. RNA NGS

- NGS absolutely required to cover the breadth of splice site alterations AND the many other actionable targets in NSCLC
- Test all NSCLC patients for every target

Davies KD, et al. J Thorac Oncol. 2019;14(4):737-741.

How Should We Look for *MET* Exon 14 Skipping Mutations? Tissue vs. Liquid biopsies

Clinical Characteristics of MET-Altered Lung Cancers Are Heterogeneous and Different from Other Lung Cancers

Patients With MET Exon	14-Altered Lung Cancers	s (N = 69)
Age, years	Median (range)	72 (34–91)
Sex n (%)	Female	40 (58)
	Male	29 (42)
	White	50 (72)
$P_{2} = n (\%)$	Asian	11 (16)
Race, II (70)	Black	2 (3)
	Other	6 (9)
	Former smoker	42 (61)
Smoking history, n (%)	Never smoker	26 (38)
	Smoker	1 (1)
	Adenocarcinoma	58 (84)
Turner histology, $p(0)$	Sarcomatoid carcinoma	6 (9)
rumor histology, n (%)	Squamous cell carcinoma	3 (4)
	Adenosquamous carcinoma	2 (3)
	0	19 (28)
ECOG performance status, n (%)	1	49 (71)
-	2	1 (1)
Prior treatments for advanced discoses π (0)	0	26 (38)
Filor treatments for advanced disease, n (%)	≥1	43 (62)

Drilon A, et al. Nat Med.2020;26:47-51.

MET Exon 14-Altered NSCLC Patients Respond to MET Inhibitors

Baseline

Paik PK, et al. Cancer Discov. 2015;5(8):842-849.

W@TLCconference #TexasLung23

VISION and GEOMETRY Trial Designs: Single Arm Phase 2 Trials

1. Felip E, et al. WCLC 2021. 2. Paik PK, et al. N Engl J Med. 2020;383(10):931-943. 3. Wolf J, et al. ASCO 2021; Abstract 9020. 4. Wolf J, et al. N Engl J Med. 2020;383:944-957.

@TLCconference #TexasLung23

VISION update 2022

Cohort C primary analysis provided independent confirmation for robust and durable efficacy of tepotinib

	Cohort C	Cohort A	Cohort A+C
	(N=161)	(N=152)	(N=313)
ORR,	54.7	46.7	50.8
% (95% CI)	(46.6, 62.5)	(38.6, 55.0)	(45.1, 56.5)
DCR,	80.1	72.4	76.4
% (95% CI)	(73.1, 86.0)	(64.5, 79.3)	(71.3, 81.0)
mDOR,	20.8	15.4	18.0
months (95% CI)	(12.6, ne)	(9.7, 46.4)	(12.4, ne)
mPFS,	13.8	10.3	11.2
months (95% CI)	(10.4, ne)	(8.2, 12.7)	(9.5, 13.8)
mOS,	18.8	19.8	19.3
months (95% CI)	(14.4, 25.5)	(15.2, 22.9)	(15.8, 22.3)

Thomas et al. WCLC 2022

🎔 @TLCconference #TexasLung23

Efficacy was particularly meaningful in treatment-naïve patients enrolled by tissue biopsy

• 74.5% of patients were enrolled in Cohort C based on *MET*ex14 skipping detection by tissue biopsy

1L T+	Cohort C (n=69)		Cohort A+C (n=111)
BOR, n (%) CR PR SD PD NE	0 43 (62.3) 17 (24.6) 7 (10.1) 2 (2.9)	1 (2.4) 19 (45.2) 13 (31.0) 3 (7.1) 6 (14.3)	1 (0.9) 62 (55.9) 30 (27.0) 10 (9.0) 8 (7.2)
ORR,	62.3	47.6	56.8
% (95% CI)	(49.8, 73.7)	(32.0, 63.6)	(47.0, 66.1)
DCR, 87.0		78.6	83.8
% (95% Cl) (76.7, 93.9)		(63.2, 89.7)	(75.6, 90.1)
mDOR, ne ne (10.4, ne)		46.4 (7.6, ne)	46.4 (13.4, ne)
mPFS, 15.9		15.3	15.3
months (95% CI) (10.8, ne)		(8.2, ne)	(11.3, ne)
mOS,	OS, 22.7		25.9
months (95% CI)	onths (95% CI) (12.7, ne)		(17.5, 36.6)

Thomas et al. WCLC 2022

Efficacy was also robust and durable in previously treated patients enrolled by tissue biopsy

2L+ T+	Cohort C	Cohort A	Cohort A+C
	(n=51)	(n=46)	(n=97)
BOR, n (%) CR PR SD PD NE	0 26 (51.0) 16 (31.4) 4 (7.8) 5 (9.8)	0 22 (47.8) 12 (26.1) 9 (19.6) 3 (6.5)	0 (0.0) 48 (49.5) 28 (28.9) 13 (13.4) 8 (8.2)
ORR,	51.0	47.8	49.5
% (95% CI)	(36.6, 65.2)	(32.9, 63.1)	(39.2, 59.8)
DCR,	82.4	73.9	78.4
% (95% CI)	(69.1, 91.6)	(58.9, 85.7)	(68.8, 86.1)
mDOR,	12.6	12.4	10.2
months (95% CI)	(4.3, ne)	(7.0, 18.0)	(8.3, 18.0)
mPFS,	13.8	11.0	11.5
months (95% CI)	(6.9, ne)	(8.2, 16.8)	(8.2, 16.8)
mOS,	19.6	20.8	20.4
months (95% CI)	(14.6, ne)	(14.3, 27.2)	(17.0, 26.8)

Thomas et al. WCLC 2022

GEOMETRY efficacy update 2021: treatment-naive

			-			
	-			Ŧ	Ŧ	÷
And interest improved in	PT					
Designed management	104		10.00		14	1.8
To be near the	-	1.044	-	-	100.0	44.04
The balance	1444	1104	****		1.06.61	10.00.0
Secondaria Secondaria Secondaria Secondaria	104	•	10.0	-+		
Augmine dates	1000		10.0	44810		
(Shi i al'adhai	4.1			1000	in t	10.0.0
	****		all'as			-
and Application	mina.				1.1.1.	-
Channel with	wate.	1,000	11418	1100.0	1-1444	907.0
215 March		-	-122	and the second	-	and in
Winners, site	10.04.0-	11413		where the	2017-01	
Martin PE-Australian		-22	117.4	and then		alla.

Wolf et al. 9020 ASCO 2021

AUSTIN SCOUPERENCE

GEOMETRY efficacy update 2021: previously treated

			-			
	-			寶	Ŧ	÷
Anno contrati temperatura - 1	m					
Designed states or	104		10.0		14	1.4
forman and	1044.0	1.044	-	-	100.0	44,04(0)
Train disease	1444	1.044			1004	10.00.0
Secondaria Secondaria Secondaria Secondaria	194	•	10.0	-+		
Augment dame	100		10.0	1000		
(Shi i al'adhai				410.4	in h	10.0.0
-	****		and the second			-
	-			120	1.200	
Charles with	white.	1,000	11412	1186.0	1.040	1677.0
And a second second		100	-112	and the	-	selles.
Winners, site	10.04.0-	-		****	2017-01	
Market P.L. Andrew		-72	-117 a	all'as		11.

Wolf et al. 9020 ASCO 2021

MET Inhibitor CNS Activity is Likely Present but Requires Prospective Assessment

AUSTIN A 2023

Phase II VISION Trial: Tepotinib

- 7 pts with baseline BM
 - ORR=71%

Patel et al. ASCO 2021; Abstract 9084.

Phase II GEOMETRY Trial: Capmatinib

13 pts with baseline BM
ORR=54%

Garon E, et al. presented at AACR. 2020: Abstract CT082.

TEAEs (Overall Rate ≥10%)	Related Crizo	d TEAE otinib	Relatec Capma	l TEAE atinib	Related Tepo	d TEAE otinib	Relatec Savol	l TEAE itinib
	Any grade	Grade ≥3	Any grade	Grade ≥ 3	Any grade	Grade ≥ 3	Any grade	Grade ≥ 3
Peripheral Edema	51%	1%	42%	8%	63%	7%	54%	7%
AST increase	17	~~	NR	NR	7%	2%	37%	13%
ALT increase	49	%	NR	NR	7%	3%	37%	10%
Hypoalbuminemia	NR	NR	NR	NR	16%	2%	23%	0%
Creatinine increase	NR	NR	20%	0%	18%	1%	NR	NR
Fatigue	NR	NR	14%	3%	7%	1%	NR	NR
Nausea	41%	0%	33%	2%	26%	1%	44%	0%
Vision disorder	45%	1%	NR	NR	NR	NR	NR	NR

1. Drilon A, et al. Nature Med 2020. 2. Wolf et al. ASCO Annual Meeting 2019. 3. Paik et al. NEJM 2020. 4. Lu et al. ASCO Annual Meeting 2020

wclc2020.IASLC.com | #WCLC20

CONQUERING THORACIC CANCERS WORLDWIDE

AEs of clinical interest: Time to first onset and time to resolution

Events, n	Edema (n=178)	Nausea (n=68)	Diarrhea (n=67)	Vomiting (n=33)	Creatinine increase (n=66)
Total	337	87	112	47	96
Resolved at time of analysis	115	67	102	44	67

/eillon et al. WCLC 2020

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

Capmatinib AE kinetics similar to tepotinib

Heist et al. ESMO 2021

Management of tepotinib-related peripheral edema

~11 weeks

Alexander T. et al. ONS 2021

Managing MET inhibitor common side effects

Alexander T. et al. ONS 2021

9 @TLCconference #TexasLung23

MET inhibition: resistance mechanisms

Paik PK, et al. NEJM 2020

MET inhibition: resistance mechanisms

Paik PK, et al. NEJM 2020

Molecular responses associated with clinical responses

Tumor shrinkage over time

Paik PK, ASCO 2021

Speaker: Paul K. Paik, MD, Memorial Sloan Kettering Cancer Center

W@TLCconference #TexasLung23

Emerging resistance mechanisms were detected in samples taken at the time of disease progression

End-oftreatment

<i>MET</i> kinase domain mutations	Other <i>MET</i> mutations	Best objective response	PFS, months
D1228N	-	Partial response	11.2
D1228H	-	Partial response	11.1
Y1230H	G685E	Complete response	11.0
D1228N	-	Partial response	11.0
D1228G	-	Partial response	10.6
Y1230H/C	-	Partial response	6.9
-	G344R	Stable disease	5.6
Y1230H/C		Partial response	4.2
-	S156L	Stable disease	4.2

- *MET* kinase domain mutations, which were not present at Week 6 or 12, were detected at EOT in 7/52 patients (13%)
 - All patients with emerging Y1230 and D1228 mutations were responders and 5/7 had PFS >10 months
 - Other *MET* mutations (of unknown functional significance) were detected in three patients

Paik PK, ASCO 2021

Immunotherapy in MET+ lung cancer: concern for potential resistance

Sabari JK, et al. Ann Oncol. 2018;29(10):2085-2091.

CHRYSALIS Phase 1: METex14 Population

Eligibility

- Metastatic or unresectable/advanced NSCLC
- Failed or ineligible for standard of care therapy

Eligibility for METex14 Cohort

- Measurable disease
- Primary METex14 mutation by NGS of tumor or ctDNA.

Na of April 11, 2022 (circlel cutoff).
C. cyclic cEDNA, circulating tumor DNA, NGS, next generation sequencing: NSCLC, non-small cell tung centrer; GW, since weekly; G2W, every two weeks; RIP2D, recommended phase-2 does; DOC, etandard of care.

Copies of this shift lend shiftened through Cauch Responses (GP) Code are for personal case why and may not be rearranged without permission them ASIC/OF or the autom of this shifter.

Contact of this preparation is the property of the within itransact by ASCO. Permission regularities muse

@TLCconference #TexasLung23

METex14 Cohort Demographics and Baseline Characteristics

As of April 11, 2022, 55 patients had been enrolled in the METex14 cohort, 28 of whom had prior MET inhibitor therapy

	and the second se	Previou		
Characteristic, n (%)	Treatment-naive, n=9	No Prior MET Inhibitor,* n=18	Prior MET Inhibitor, n=28	Total, n=55
Median age, years (range)	70 (5775)	69.5 (49-80)	70 (43-88)	70 (43-88)
Female / Male	5 (56) / 4 (44)	11 (61) / 7 (39)	16 (57) / 12 (43)	32 (58) / 23 (42)
Race				
Asian	5 (56)	9 (50)	14 (50)	28 (51)
White	4 (44)	7 (39)	10 (36)	21 (38)
Black	0	0	1 (4)	1 (2)
Not reported	0	2 (11)	3 (11)	5 (9)
History of brain metastases	1 (11)	2 (11)	7 (25)	10 (18)
Smoking history	at stands	a 102-102	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Non-smoker	4 (44)	9 (50)	16 (57)	29 (53)
Smoker	5 (56)	9 (50)	12 (43)	26 (47)
Median number of prior lines (range)	0	1.5 (1-4)	3 (1-10)	2 (0-10)

"Previously-beated, MET imbition-raise patients, METex14, MET exon 14 skipping mutations.

#ASC022

Copies of this state inclusion advantant timesign. Quark Responses (QP), Dode and far particular can only and may not be reproduced their partnesses hare ASCON or the autor of the oldes

Contant: of this preparticles in the property of the authic loadaal to ASOS. Parmenter repaired for rause

PRINTED BY

Antitumor Activity of Amivantimab Monotherapy

*Two patients discontinued prior to completing their secondpositieseline disease assessment (1 in treatment neive group and 1 in to prior MET inhibitor group). *Two additional patients had a beet timepoint response of PR but did not confirm. NE/UNX, not evaluable/unknown; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease; SoD, sum of diameters; TKI, tyroaine kinase inhibitor.

٠

Copies of this club deci statement through Cauch Response (GR) Code are far personal can only and may not be superficient without permusion them ASIC/IRI or the author of this oblics.

Contant of the preparation is the property of the within, Transating ASCO. Plenetasian required for route

Speaker: Paul K. Paik, MD, Memorial Sloan Kettering Cancer Center

#ASC022

Safety Profile

	RP20 (n=425)	METex14 Se	abset (n=\$5)
TEAE (215%) by Preferred Term,	Median follow-u	ap 11.6 months	Median follow up 5.1 months	
in (%)	All Grades	Grade 21	All Grades	Grade 21
Infusion related reaction	283 (67)	11 (3)	38 (69)	3 (5)
Rash	155 (36)	8 (2)	17 (31)	1(2)
Dermatitis acheiform	155 (36)	4(1)	22 (40)	0
Paronychia	193 (45)	7 (2)	21 (38)	0
Fatigue	93 (22)	8 (2)	17 (31)	2 (4)
Hypoalbuminemia	135 (32)	10 (2)	15 (27)	1 (2)
Stomattis	91 (21)	2 (0.5)	15 (27)	0
Decreased appetite	76 (18)	2 (0.5)	12 (22)	0
Dyspnea	96 (23)	21 (5)	12 (22)	4 (7)
Peripheral edema	104 (24)	4(1)	11 (20)	0
Pruritus	79 (19)	0	12 (22)	0
Nausea	104 (24)	2 (0.5)	11 (20)	0
Constipation	105 (25)	0	10 (18)	0
Hypomagnesemia	41 (10)	0	9 (16)	0
Aspartate aminotransferase increased	64 (15)	5(1)	9 (16)	1 (2)
Alanine aminotransferase increased	72 (17)	10(2)	8 (15)	1 (2)
Cough	78 (18)	0	3 (5)	0

- Treatment modifications due to toxicity (n=425): interruptions in 21%, reductions in 12%, and discontinuations in 5% of patients
 - Rates of pneumonitis/ILD was 4% ٠
 - Cumulative grouped rash-related ٠ AEs* occurred in 322 (76%) patients, with 16 grade ≥3 (4%)
- Safety profile for METex14 subset is consistent with the larger CHRYSALIS safety population, with majority of events grade 1-2
- No new safety signals found

Rash-related terms include rash, demattis acneiform, acne, bilster, demattis acopic, demattis extolative generalized, demattis infected, eczema asteatotic, erythema, multiforme, foliculitis, hand dermatilis, macule, patriar plantar anythrodysaesthesia syndrome, partnast rash, partoral deretablis, pustular, rash macular, rash macular, rash macular, rash pustular, rash pustular, rash pustular, rash pustular, rash macular, rash macular, rash macular, rash macular, rash macular, rash macular, rash pustular, rash pustular, rash macular, r extolation, exit teston, and took epidemial necrolysis; curricative grouped rest-related Alts occurred 39 (89%; grade 23, 2 (4%)) peterns for the METex14 solvers, AE, educate event; ILD, interstitial lung disease; METex14, MET exon 14 skipping mutations: RP2D, recommended phase-2 does: TEAE, treatment-emergent AE.

Contant of this presentation is the property of the authin: Invariantl by ASIGS. Parminstern required for rause

Speaker: Paul K. Paik, MD, Memorial Sloan Kettering Cancer Center

Teliso-V (MET ADC) + erlotinib (H-score ≥ 150)

TABLE 2. Adverse Events

Teliso-V Plus Erlotinib (N = 42), No. (%)

Adverse Event	Any Grade (≥ 10% of Patients)	Grade \ge 3 (\ge 5% of Patients)
Any adverse event	42 (100)	27 (64)
Peripheral sensory neuropathy	18 (43)	3 (7)
Dermatitis acneiform	16 (38)	2 (5)
Diarrhea	14 (33)	3 (7)
Hypoalbuminemia	14 (33)	0
Fatigue	13 (31)	2 (5)
Dyspnea	12 (29)	2 (5)
Decreased appetite	10 (24)	1 (2)
Nausea	10 (24)	0
Asthenia	9 (21)	2 (5)
Vomiting	9 (21)	0
Cough	8 (19)	0
Peripheral neuropathy	8 (19)	1 (2)

Response				
	c-Met+ EGFR-M+ (n = 28), No./n (%)	c-Met+ <i>EGFR</i> -WT (n = 5), No./n (%)	c-Met+ EGFR-Rare/Unknown (n = 3), No./n (%)	Total (N = 36), No./N (%)
Best overall response*				
Complete response	1/28 (4)	0/5	0/3	1/36 (3)
Partial response	8/28 (29)	2/5 (40)	0/3	10/36 (28)
Stable disease	15/28 (54)	2/5 (40)	3/3 (100)	20/36 (56)
Progressive disease	4/28 (14)	1/5 (20)	0/3	5/36 (14)
Objective response rate ^b (95% CI)	9/28 (32.1) (15.9 to 52.4)	2/5 (40.0) [5.3 to 85.3]	0 (0.0 to 70.8)	11/36 (30.6) [16.3 to 48.1]
Disease control rate: [95% CI]	24/28 (85.7) [67.3 to 96.0	4/5 (80.0) [28.4 to 99.5]	3/3 (100) [29.2 to 100]	31/36 (86.1) [70.5 to 95.3]
Progression-free survival				
Median, months (95% CI)	5.9 (2.8 to NR)	6.0 [1.2 to NR]	4.0 [1.6 to NR]	5.9 [2.8 to NR]

Teliso-V Plus Erletinib

Camidge et al. JCO 2022

MET exon 14 testing is now standard of care

NCCN recommends first-line MET therapy for MET exon 14 skipping + patients

How to apply MET exon 14 testing as standard of care

- Next-generation sequencing (NGS) is standard of care for all newly diagnosed NSCLC patients
 - Will identify many potential actionable drivers such as EGFR, ALK fusions, MET exon 14, HER2, BRAF V600E, KRAS G12C, RET fusions, ROS1 fusions, NTRK fusions
- NGS should be performed on both tumor and blood simultaneously
- Tumor testing is gold standard (sensitivity/specificity) but:
 - Has issues with tissue availability/quantity
 - Is slower in turnaround
- ctDNA testing is increasingly being adopted up-front because:
 - Not invasive/easy to obtain
 - Faster turnaround time
- ctDNA testing is subject to false negatives based largely on tumor bulk and potential coverage limitations depending on country

How to apply MET exon 14 testing as standard of care: my algorithm

How to apply MET exon 14 testing as standard of care: my algorithm

Speaker: Paul K. Paik, MD, Memorial Sloan Kettering Cancer Center

Thank you!

Endorsed by

