

NSCLC WITH ALK AND ROS1 ALTERATIONS

Jason Porter, MD

West Cancer Center and Research Institute

April 1, 2023

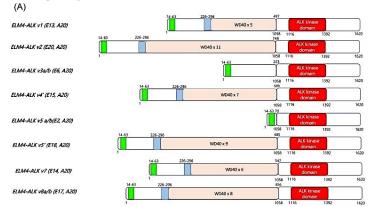
Endorsed by

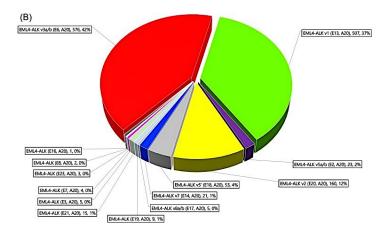
Accredited by

Objectives

- ALK mutational overview
- Select ALK Pivotal Trials: Data / updates
- Selecting 1L tx in ALK
- ALK in Early stage NSCLC
- ROS1 Directed Therapy
- ROS1 Resistance

NSCLC

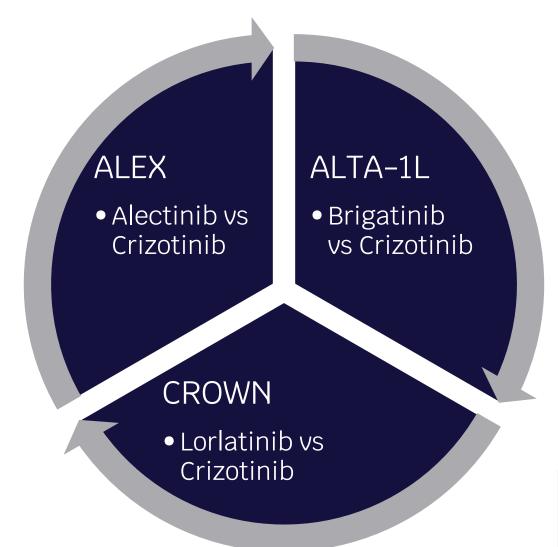



- Increasingly recognized as various molecular diseases
- Percentage of patients with targetable oncogene drivers now approaches 50%
- Therapeutic approaches completely depend on the discovery of relevant alterations
 - NGS for ALL patients with NSCLC, in community and academic settings is necessary and reasonable
 - Molecular alterations are both diagnostic and prognostic

ALK Alterations

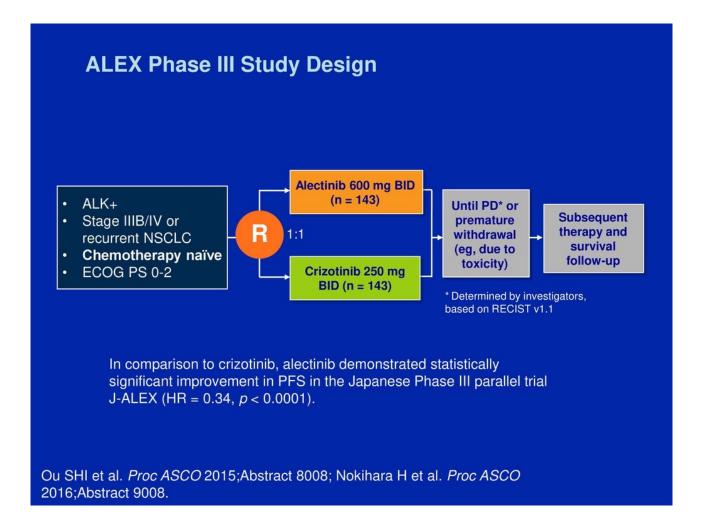
Anaplastic Lymphoma Kinase Alterations/Fusions

- ALK aberrantly expressed in multiple tumor types
- Rearrangements involving ALK gene loci on chromosome 2
- Most commonly EML4-ALK fusions occur
- Variants 1 and 3 are the most common co-occurring fusion partners (~80%)
- Differential treatment response and resistance patterns related to various arrangements


https://www.alkpositive.org/blog/2021/9/12/identifying-and-understanding-eml4-alk-variants-and-tp53-mutations-to-optimize-treatment-of-alk-fusion-positive-alk-nsclc

Pivotal ALK Trials

- Profile 1014
- **ASCEND-4**
- eXalt3


Crizotinib Ceritinib

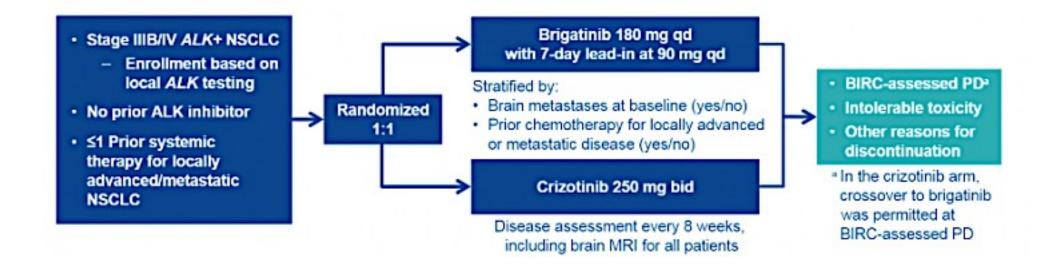
Ensartinib

Alectinib

- 2nd generation ALK Inhibitor
- Compared to Crizotinib in ALEX trial
- Statistically significant improvement in PFS
- CNS penetrant and active
 - 12-mo incidence of CNS progression 9.4% vs 41.4% with crizotinib

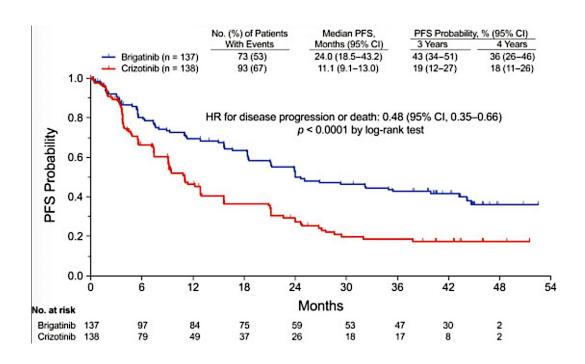


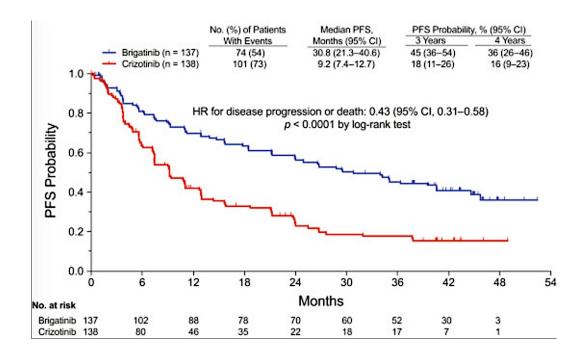
ALEX Trial PFS Analysis


Updated efficacy and safety data from the global phase III ALEX study of alectinib(AL) versus crizotinib(CZ) in untreated advanced ALK+ NSCLC Camige et. Al ASCO 2018

Brigatinib

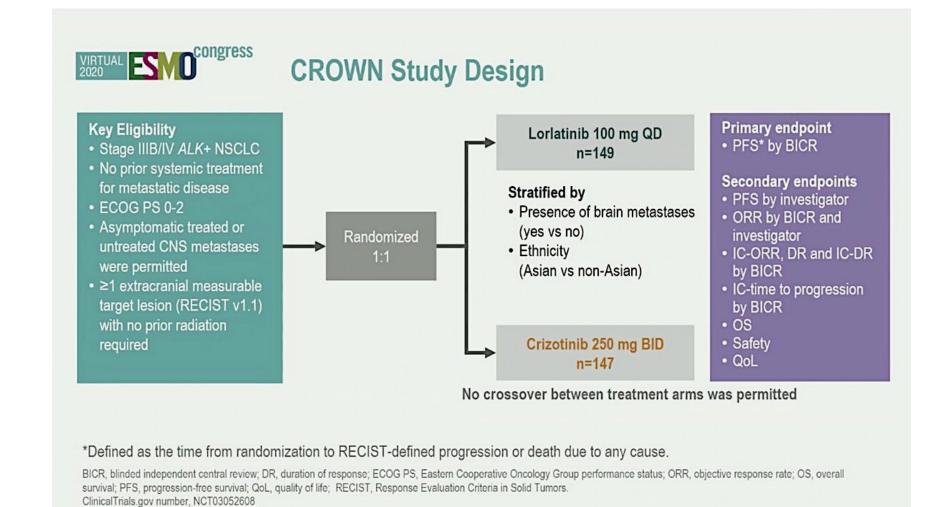
ALTA-1L Trial Design


https://clin.larvol.com/trial/NCT02737501


ALTA-1L Final PFS Analysis

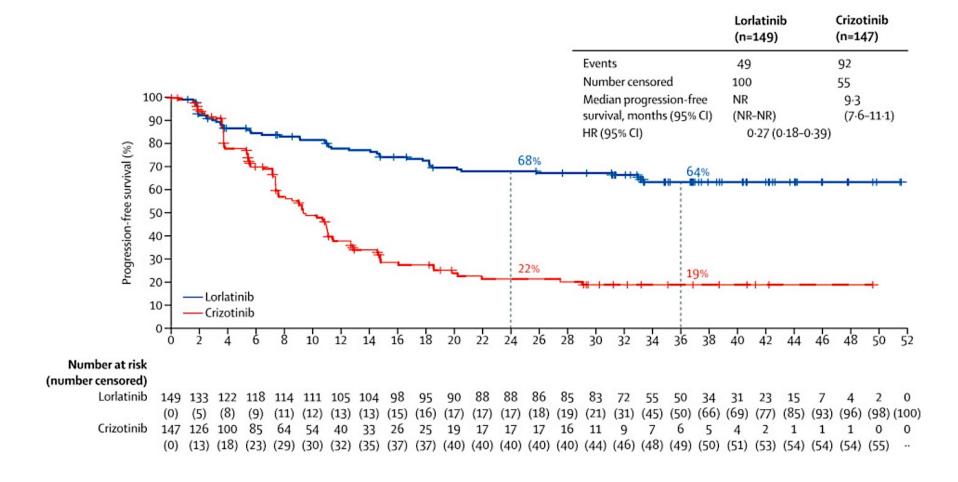
BIRC-Assess Systemic PFS: ITT Population

Investigator-Assessed Systemic PFS: ITT Population



Journal of Thoracic Oncology Volume 16, Issue 12, December 2021, Pages 2091-2108

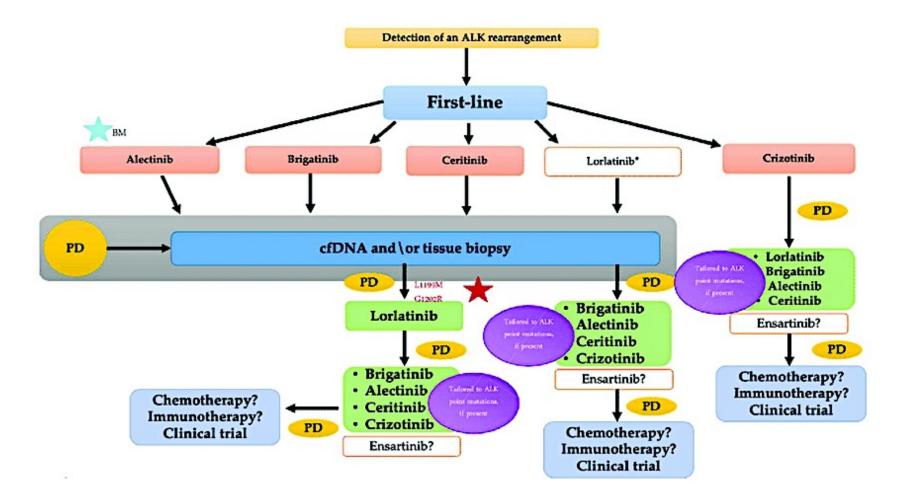
Lorlatinib



INTERNATIONAL OF LUNG CANCER

CROWN Trial PFS: ITT Population

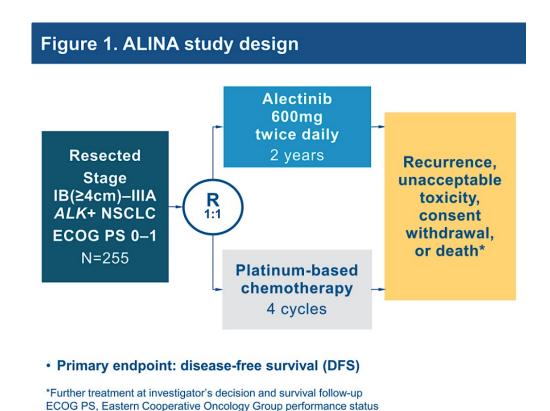
The Lancet: Updated analysis of data from the phase 3, randomized, open-label CROWN study Published: December 16, 2022


	ALEX	ALEX ALTA-1	
Comparative Agents	Alectinib vs Crizotinib	Brigatinib vs Crizotinib	Lorlatinib vs Crizotinib
Primary EP	PFS-BIRC	PFS-BIRC	PFS-BIRC
ORR	82.9% vs 75.5%	71% vs 60%	76% vs 58%
Median OS	NR vs 57.4 mos	NR both groups	NR both groups
Median PFS	34.8 mos vs 10.9 mos	24 mos vs 11 mos	NR vs 9.3 mos
Hazard Ratio	0.43	0.49	0.28
Toxicities of Interest	Myalgia Elevated CK effe Peripheral r		Mood and Cognitive effects Peripheral neuropathy Weight gain

Peters et al., NEJM, 2017; Shaw et al., NEJM, 2020; Camage et al., NEJM, 2018; Solomon et al., JCO 2018.

Selection/Sequencing Considerations

Gristina, Valerio & La Mantia, Maria & Iacono, Federica & Galvano, Antonio & Russo, Antonio & Bazan, Viviana. (2020). The Emerging Therapeutic Landscape of ALK Inhibitors in Non-Small Cell Lung Cancer. Pharmaceuticals. 13. 474. 10.3390/ph13120474.



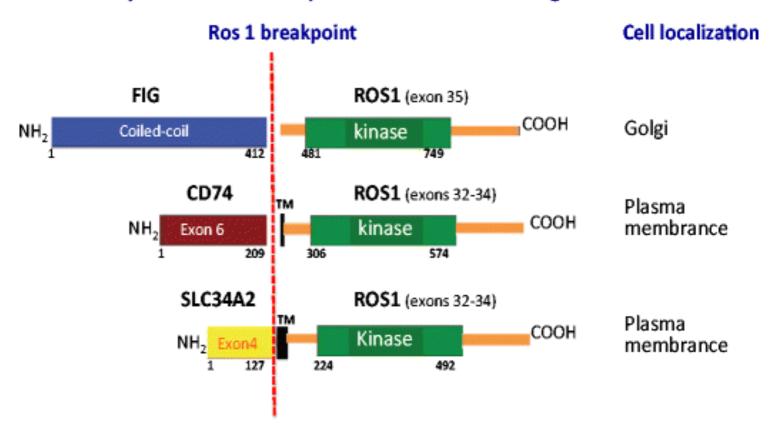
ALK-Inhibition in Early Stage ALK Rearranged NSCLC

ALINA

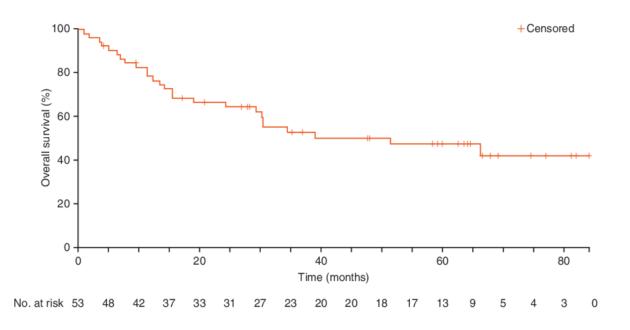
- Randomized open label Phase III
- Evaluating efficacy and safety of adjuvant alectinib vs chemotherapy

ALINA: A PHASE III STUDY OF ALECTINIB VERSUS CHEMOTHERAPY AS ADJUVANT THERAPY IN PATIENTS WITH STAGE IB-IIIA ANAPLASTIC LYMPHOMA KINASE-POSITIVE (ALK+) NON-SMALL-CELL LUNG CANCER (NSCLC) ASCO-2019

ROS1 In NSCLC


Crizotinib **Entrectinib** Resistance **Next Generation ROS1 Inhibitors**

Most frequent ROS1 fusion proteins described in lung adenocarcinoma

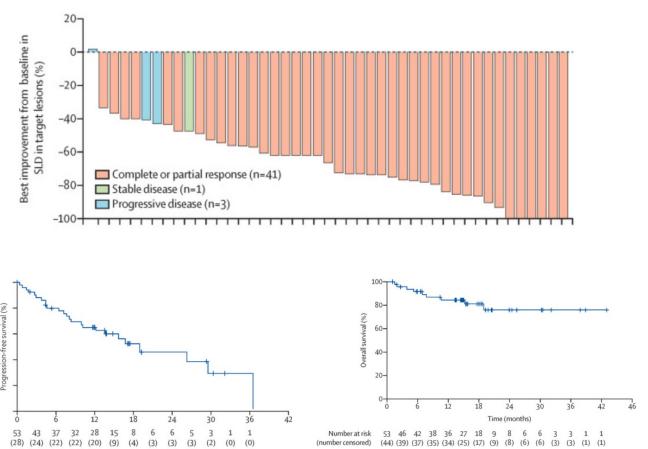


Crizotinib in ROS1 NSCLC

PROFILE 1001

- Initially developed in MET and ALK fusion + NSCLC
- Phase I Profile 1001 expanded to include ROS1 + NSCLC
- N = 50 with ORR 72 % (95% CI 58-84)
- 86% of patients having had prior treatment
- Median PFS 19.2 months (95% CI 14.4 to NR)
- Median OS 51.4 months (62.6 mos follow-up)
- FDA approved in 2016 for ROS1 + NSCLC

Shaw Crizotinib, Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001}, Alice T. Shaw and Gregory Riely and Y-J. Bang and D. W. Kim and D. Ross Camidge and Benjamin J. Solomon and Marileila Varella-Garcia and A. John lafrate and Geoffrey I. Shapiro and Tiziana Usari and S. C. Wang and Keith D. Wilner and J. W. Clark and Sai-Hong Ignatius Annals of Oncology, 2019, volume={30}, pages 1121-1126



Entrectinib in ROS-1+ NSCLC

Integrated Data from ALKA, STARTRK-1/2

Endpoint	N = 53 patients
ORR	77%
mPFS	19 mo
mDOR	24.6 mo
Intracranial ORR	55%
mPFS in pts with brain mets	13 mos

Doebele R, et al. WCLC 2018 Abstract OA02.01.

Addressing Resistance in ROS1 + NSCLC

Determine Pattern of Progression

Oligoprogression-

local therapy (RT, Ablation, resection)

CNS-Only

- Next Gen ROS1 inh.-
- lorlatinib, repotrectinib, taletrectinib or entrectinib if prior crizotinib

Systemic Progression-

- On target- Next Gen ROS1 inhibitors
 - Ex G2032R tx'ed with Repo, Tale or NVL-520
- Off target- Next Gen Ros1 Inhibitors, Chemo, Clinical trials or TKI combinations

ROS1 Inhibitors- Pharmacodynamic and Efficacy Profile

	Crizotinib	Ceritinib	Lorlatinib	Brigatinib	Cabozantinib	Foretinib	Entrectinib	AZD3463	Repotrectinib	Ensartin
Cthrough (ng/mL)	237 to 800	1400		552	1080	46 to 900				
Cthrough (nM)	530 to 913					70	1330		425	
CSF/plasma conc.	0.001 to 0.003						0.4		0.04	
WT CD74-ROS	2 to 44	11 to 230	0.05 to 1	2.7 to 30	0.5 to 9	1.8 to 14	5.3 to 10	10	0.2	39
WT SLC34A2-ROS1	21	506	1.15			19				
WT FIG-ROS	41 to 60	304 to 488	0.2			6				
E1935G	350	i .				6.6				
L1947R	1420					17.9				
L1947R L1951R	8.8 to 97	76.4 to 611		611	0.18 to 20.7	17.9				
G1971E	605	70.4 to 011		011	0.18 to 20.7	8.7				
E1974K	23	42.3		10.3	6.8	6.2		30,9		
V1979A	b	42.3 b		10.5	0.8	0.2		30.9		
V1979A V1979M	b	D								
	d	1	1							
1981 Tins ^c		d	d		0.08 to 2.94	15.3				
L1982F	4.7 to 6.9	23 to 27	4. 46		0.08 to 2.94	15.3				
S1986 Y/F ³	116 to 125	73 to 99	1 to 1.6		0.24					
E1990G	4.0	22.1			0.34					
F1994L M2001T °	3.3 d	19.4	d		0.01					
		d	d		0.00. 0.00					
K2003I	1.4 to 1.5	4.5 to 11.7		20.0	0.28 to 0.32	00.5		400		
F2004C	40.5	68.7		20.2	56.8	23.5		19.9 53.2		
E2020K	41.1	97.8	,	24.9	10.5	9.7		55.2		
F2024 C/V °	d	d	d	25. 200	0.02 . 44	22. 06	2500	4000		
L2026Ma L2028- °	22.4 to 259	4.6 to 90	1.1 to 2	3.5 to 200	0.92 to 11	3.2 to 8.6	3500	1800		
G2032Ra	254 to 2700	276 to 2200	160 to 508	170 to 1172	1.4 to 26	39.7 to 90	1813 to 2200		8.4	372
D2033Na	140 to 200	306 to 535	0.38 to 3.3	69.1 to 128	0.2 to 0.65	2.2	169		1.3	402
T2036- °	140 to 200	300 to 333	0.38 to 3.3	09.1 to 128	0.2 to 0.05	2.2	109		1.5	402
C2060G	690	1				13.6				
F2075 V/C	17 to 23	68.7 to 92		9.1 to 14.1	4.9 to 31.4	9.7 to 16		6.2, 41.6		
V2089M	15.6	42.8		6.7	7.5	2.9		16.1		
V2089IVI V2098I	10.9 to 901	44.4		9.0	1.7	2.5 to 9.9		12.5		
G2101Aa	27.1	0.06	d	9.0	1./	0.004		12.5		
GZIUIAa	27.1 25.4 to 29.6	118 to 163	u	24	15.3 to 41.2	8.5 to		40 to 42.5	F.	
D2113 N/G	25.4 10 29.0	110 10 103		24	13.3 (0 41.2	25.4		40 (0 42.5		
M2134I	14.2	55,7		11.1	4.3	5.4		15.2		
L2155S	405	185				534				
L2223S	1.13	11.2			0.07					
L2223X		b								

https://www.clinical-lung-cancer.com/article/S1525-7304%2819%2930149-4/pdf

Summary

Many options available for targeting ALK in 1st line ALK+ NSCLC

- Initial NGS critical to confirm presence of oncogene
- Consider disease burden, co-morbidities, patient preference when selecting agent
- Repeat sequencing at progression essential for selecting next therapy
 - On vs off target mechanism of resistance to influence tx
 - Clinical trial availability for certain resistance mechanisms

ROS1 fusion positive NSCLC

- Responds well to initial TKI therapy
- Resistance inevitable with on and off target resistance patterns, as well as infrequent histologic transformation
- Repeat biopsy and sequencing is best practice for patients who progress
- Remember clinical trials for these patients

Thank you!

