

Placing ADCs in the lung cancer treatment algorithm

Joshua E. Reuss, MD Georgetown University April 1, 2023

Endorsed by

Accredited by

Blueprint of an ADC

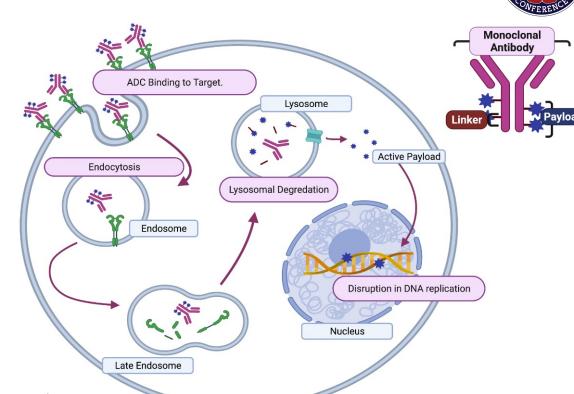
Antibody-Target

- Target selectively expressed or over-expressed on tumor cells.
- · Antibody Human or humanized immunoglobulin.
- IgG1 most common.

Linker

- Non-cleavable.
 - o Traffic to mature lysosomes for degradation.
 - Limited "bystander effect".
- Cleavable.
 - Cell physiology key to payload-linker uncoupling.
 - Prominent "bystander effect".

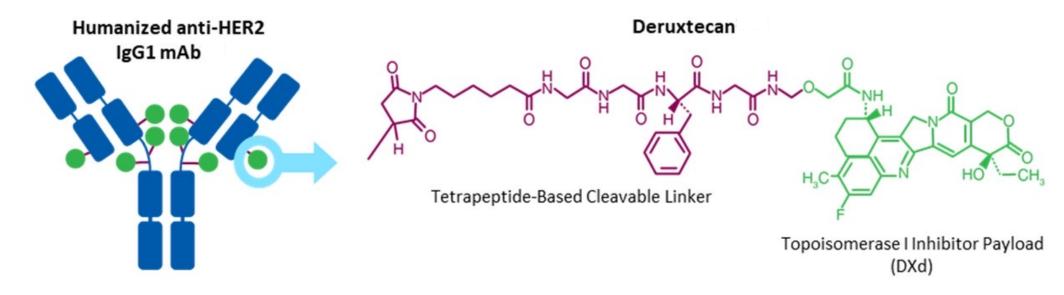
Payload


 Highly potency cytotoxin including DNA damaging agents (PBD, calicheamicin), tubulin polymerization inhibitors (MMAE, DM1), and topoisomerase inhibitors (DXd).

Mechanism of Action

 Payload delivery, ADCC, complement-mediated cytotoxicity, inhibition of oncogenic drivers.

Marks et al. Curr Oncol Rep 2022



HER2 & NSCLC

Trastuzumab Deruxtecan (T-DXd)

- T-DXd: HER2-targeted ADC of trastuzumab (anti-HER2 mAb) conjugated to deruxtecan (DXd) via cleavable linker with DAR of 8.
- Elicits significant bystander effect, supporting use in tumors with heterogeneous HER2-expression.

DESTINY-Lung01

- HER2-mutated: ORR 55%, mOS 17.8mo, mPFS 8.2mo, mDOR 9.3mo.
- HER2 overexpression: ORR 34%, mOS 11.2mo, mPFS 6.7mo, mDOR 6.2mo.

Smith et al. ASCO 2020; Li et al. NEJM 2021; Smit et al. ESMO 2022

DESTINY-Lung02: Study Design

Stratified by previous use of anti-PD-1/PD-L1 therapy

Prespecified interim analysis with 80 patients (early cohort: randomized ≥4.5 mo)

Patients with metastatic

HER2-mutated NSCLC with
activating HER2 mutations;
≥1 previous anticancer
therapy, including platinumbased CT; measurable disease
by BICR; ECOG PS ≤1

(N = 152)

T-DXd 5.4 mg/kg Q3W (n = 102)

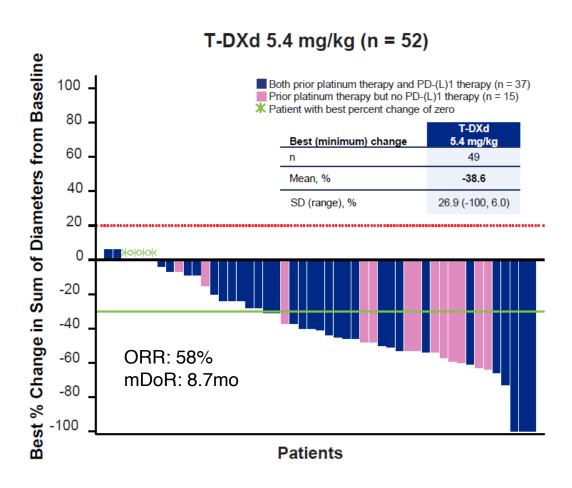
T-DXd 5.4 mg/kg Q3W (n = 52)

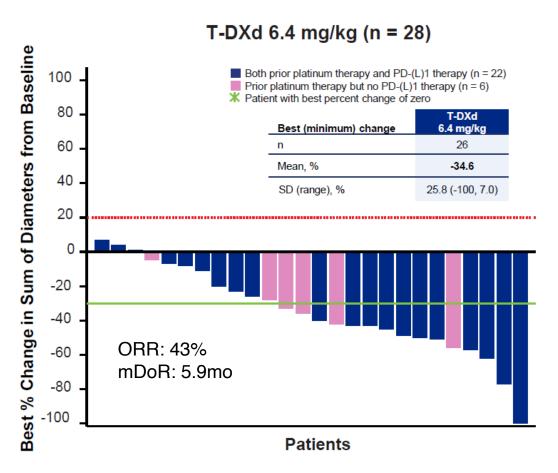
2:1

T-DXd 6.4 mg/kg Q3W (n = 50)

T-DXd 6.4 mg/kg Q3W (n = 28)

Primary Endpoint: confirmed ORR by BICR.


Secondary Endpoints: ORR by investigator, DCR, DoR, PFS, OS, PROs, Safety.


Smith et al. ESMO 2021; Goto et al. ESMO 2022

DESTINY-Lung02: Favorable efficacy & safety observed with 5.4 mg/kg dose

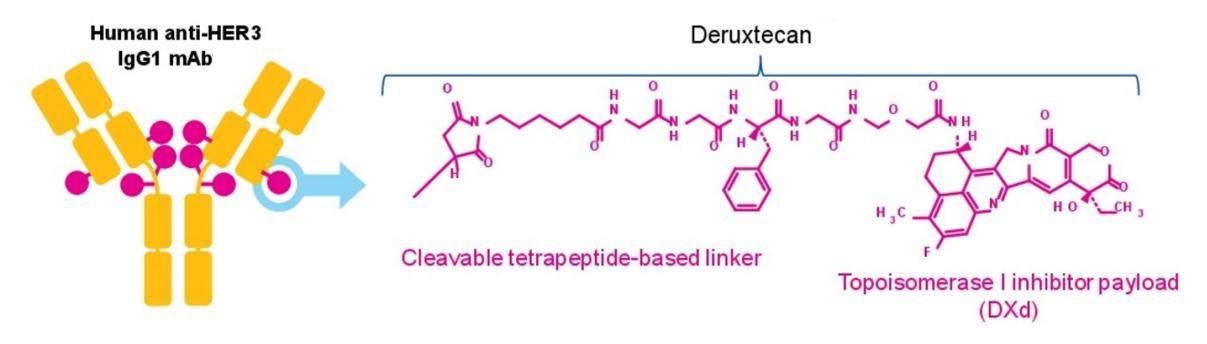
Goto et al. ESMO 2022

DESTINY-Lung02: Favorable efficacy & safety observed with 5.4 mg/kg dose

Adjudicated Drug-Related ILD

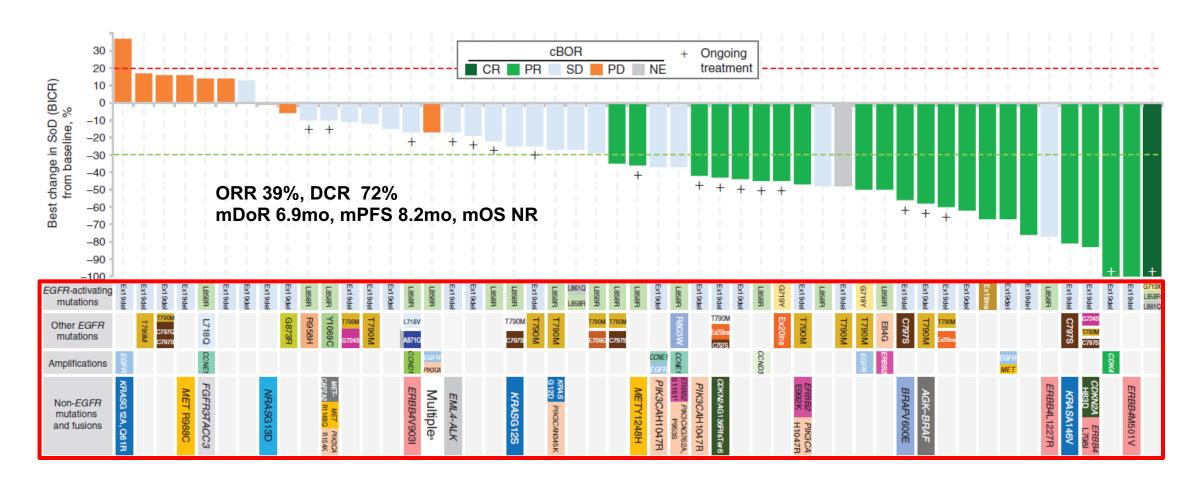
	Safety analysis set		Prespecified early cohort [□]	
_Adjudicated as drug-related ILDª	T-DXd 5.4 mg/kg n = 101	T-DXd 6.4 mg/kg n = 50	T-DXd 5.4 mg/kg n = 51	T-DXd 6.4 mg/kg n = 28
Any grade, n (%)	6 (5.9)	7 (14.0)	4 (7.8)	5 (17.9)
Grade 1	3 (3.0)	1 (2.0)	3 (5.9)	1 (3.6)
Grade 2	2 (2.0)	6 (12.0)	1 (2.0)	4 (14.3)
Grade 3	1 (1.0)	0	0	0
Grade 4	0	0	0	0
Grade 5	0	0	0	0
Cases resolved, n (%)	3 (50.0)	1 (14.3)	1 (25.0)	1 (20.0)
Median time to onset of first adjudicated ILD, days (range)	67.5 (40-207)	41.0 (36-208)	104.5 (40-207)	43.0 (36-208)

Other G≥3 drug-related AEs less frequent at 5.4 vs 6.4mg/kg dose: neutropenia (11.9% vs 34.0%), anemia (8.9% vs 14.0%), thrombocytopenia (4.0% vs 10.0%), fatigue (3.0% vs 10.0%).


Goto et al. ESMO 2022

Patritumab Deruxtecan (HER3-DXd)

- HER3 is a partner with HER2 hetero-dimerization and subsequent PI3K/AKT signalling.
- Expressed in ~83% NSCLC, associated with poor prognosis.
- Upregulated expression observed in EGFR-mutated NSCLC.
- HER3-DXd: anti-HER3 mAb conjugated to DXd via cleavable linker with DAR 8.



Jänne et al. ASCO 2021

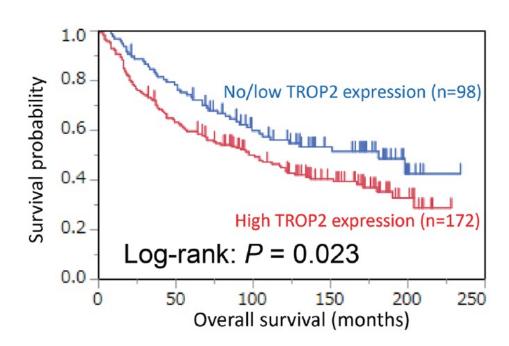
Phase 1 U31402-A-U102 Study – promising efficacy in *EGFR*m NSCLC with progression on prior targeted therapy

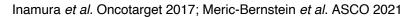
Jänne et al. ASCO 2021; Jänne et al. Cancer Discov 2021

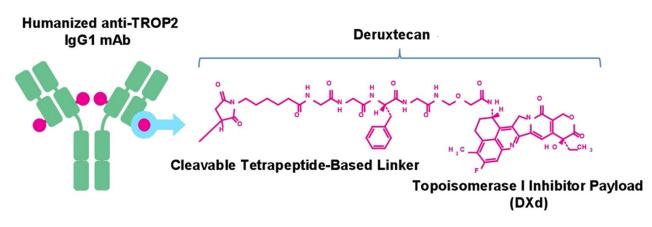
Phase 1 U31402-A-U102 Study – promising efficacy in EGFRm NSCLC with progression on prior targeted therapy

TEAEs, n (%) Median treatment duration: 5.7 (range, 0.7-28.3) mo	5.6 mg/kg (N=57)	All Doses (N=81)
Any TEAE	57(100)	81 (100)
Associated with treatment discontinuation	6 (11)	7 (9)
Associated with treatment dose reduction	12 (21)	18 (22)
Associated with treatment dose interruption	21 (37)	30 (37)
Associated with death	4 (7)	5 (6)
Grade ≥3 TEAE	42 (74)	52 (64)
Treatment-related TEAE:	55 (96)	78 (96)
Associated with death	0	0
Grade ≥3	31 (54)	38 (47)
Serious TEAE	12 (21)	15 (19)
Interstitial lung disease	4 (7)	4 (5)
Grade 1	2 (4)	2 (2)
Grade 2	1 (2)	1 (1)
Grade 3	1 (2)	1 (1)
Grade 4/5	0	0

TEAEs grade ≥3 in ≥5% of patients (N=81) Platelet count decreased Neutrophil count decreased Fatigue Anemia Dyspnea Febrile neutropenia Hypoxia White blood cell count decreased Hypokalemia Lymphocyte count decreased 0% 25% 50% 75% 100%


Jänne et al. ASCO 2021; Jänne et al. Cancer Discov 2021




TROP2 & NSCLC

- Cell surface signal transducer expressed in >90% NSCLC.
- Associated with poor prognosis in multiple tumor types, including NSCLC.
- Multiple drugs in development: Datopotomab deruxtecan (Dato-DXd), sacitizumab govitecan, SKB-264, STI-3258, JS-108.

Designed With 7 Key Attributes:

- Payload mechanism of action: topoisomerase I inhibitor
- · High potency of payload
- Optimized DAR ≈4
- Payload with short systemic half-life

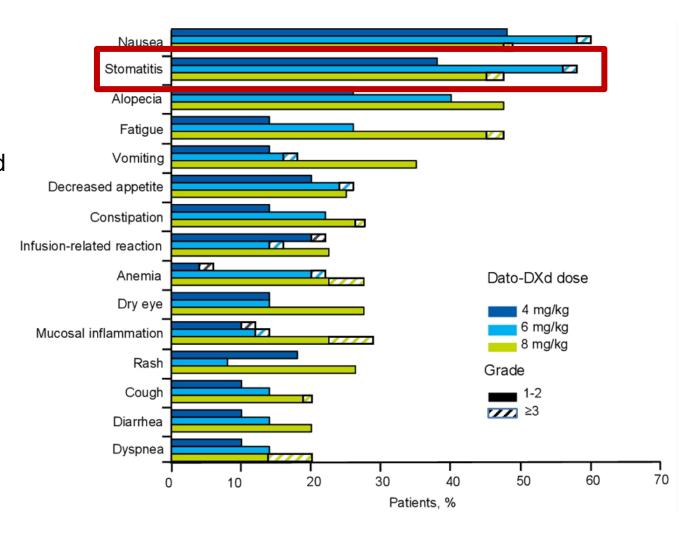
- Stable linker-payload
- Tumor-selective cleavable linker
- · Bystander antitumor effect

TROPION-PanTumor01 Trial – Early efficacy in NSCLC

Dato-DXd Dose		
4 mg/kg (n=50)	6 mg/kg (n=50)	8 mg/kg (n=80)
12 (24)	13 (26)	19 (24)
10 (20)	11 (22)	19 (24)
2 (4)	2 (4)	0
38 (76)	35 (70)	64 (80)
7 (14)	10 (20)	7 (9)
NE (2.8-NE)	10.5 (4.1-NE)	9.0 (5.8-NE)
4.3 (3.5-8.4)	6.9 (2.7-8.8)	5.2 (4.1-7.1)
	(n=50) 12 (24) 10 (20) 2 (4) 38 (76) 7 (14) NE (2.8-NE) 4.3	4 mg/kg (n=50) 6 mg/kg (n=50) 12 (24) 13 (26) 10 (20) 11 (22) 2 (4) 2 (4) 38 (76) 35 (70) 7 (14) 10 (20) NE 10.5 (2.8-NE) (4.1-NE) 4.3 6.9

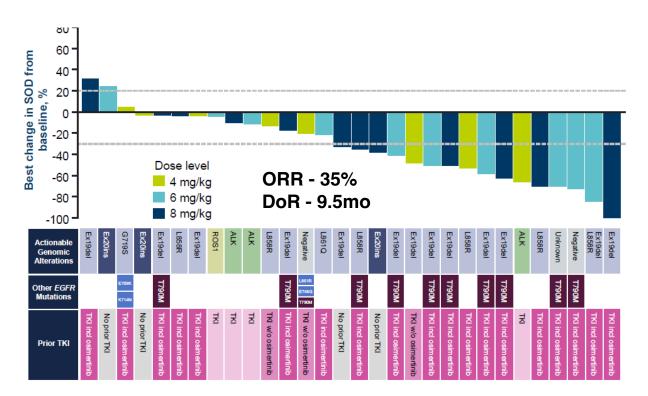
BICR, blinded independent central review, CR, complete response; DCR, disease control rate; DOR, duration of response; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PFS, progression-free survival; PR, partial response.

^a Includes response evaluable patients who had ≥1 postbaseline tumor assessment or discontinued treatment. ^b Median PFS was limited by immature duration of follow-up in the 4- and 6-mg/kg dosing cohorts.


Meric-Bernstein et al. ASCO 2021

TROPION-PanTumor01 Trial – Safety profile in NSCLC

- ≥G3 treatment-related adverse events occurred in 14%, 16%, and 18% of patients treated at 4, 6, and 8 mg/kg respectively.
- Drug-related ILD occurred in ~10% of patients, majority low grade and at 8 mg/kg dose.


Meric-Bernstein et al. ASCO 2021

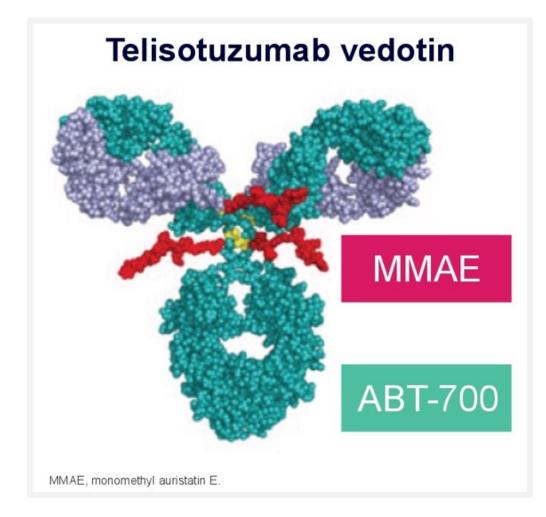
Dato-DXd – encouraging efficacy in other populations

TROPION-PanTumor01: Efficacy in pts with genomic driver mutations

TROPION-Lung02: Dato-DXd + pembrolizumab +/- platinum CT

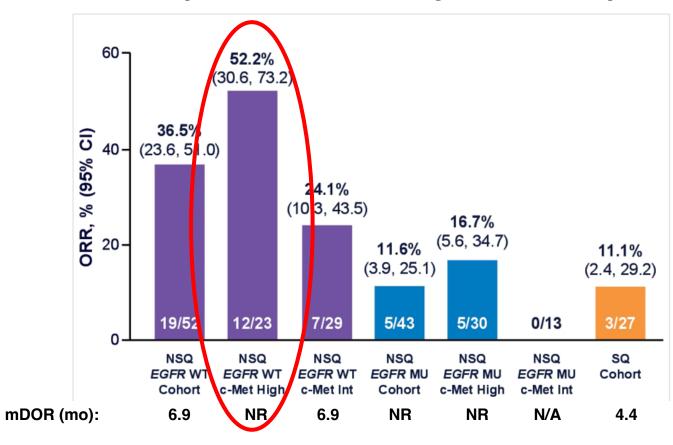
BOR With 1L Therapy For Advanced NSCLC

Response, n (%)	Doublet (n=13)	Triplet (n=20)
ORR confirmed + pending	8 (62%)	10 (50%)
CR	0	0
PR confirmed	8 (62%)	7 (35%)
PR pending	0	3 (15%)
SD	5 (39%)	8 (40%)
DCR	13 (100%)	18 (90%)


Garon et al. ESMO 2021; Levy et al. WCLC 2022

MET & NSCLC

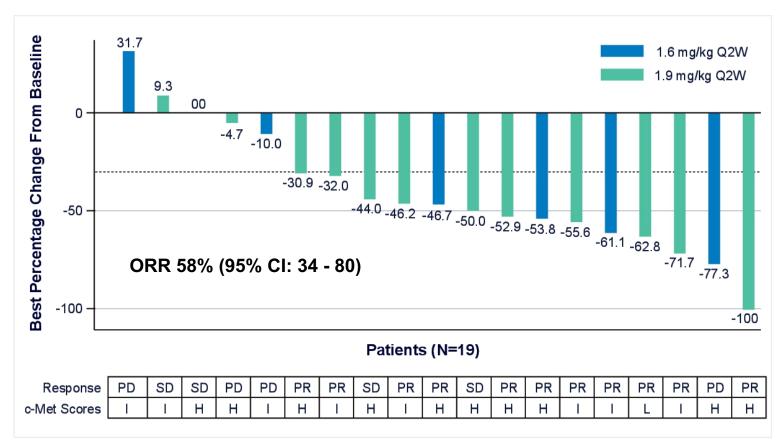
- MET activating genomic alterations (exon 14 skipping mutations), MET amplification and MET overexpression are observed in NSCLC.
 - Tepotinib, Capmatinib approved for METex14
 - Amivantamab (MET/EGFR bispecific antibody)
- MET alterations commonly observed as mechanisms of acquired resistance in other driver+ NSCLC (EGFR, ALK, ROS1, KRAS, etc).
- Telisotuzumab Vedotin (Teliso-V): ADC composed of anti-cMET mAb conjugated to MMAE via cleavable linker with DAR ~3.1.


Goldman et al. ASCO 2022

Promising efficacy of Teliso-V in *EGFR* wt NSCLC w/ high c-MET expression

ORR per Central Review by Cohort/Group

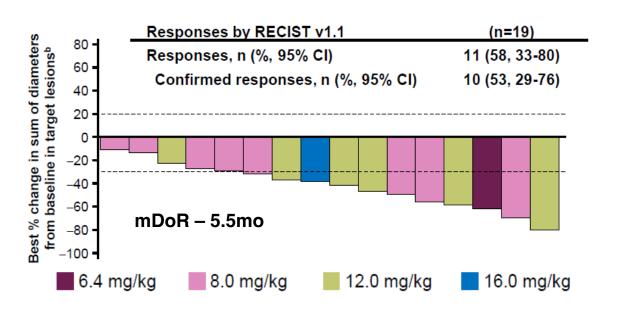
≥G3 TEAEs: Peripheral neuropathy (4%), fatigue (4%), dyspnea (3%), pneumonitis (3%)


Camidge et al. ASCO 2022

Encouraging efficacy of Teliso-V + osimertinib in setting of osimertinib failure with c-MET overexpression

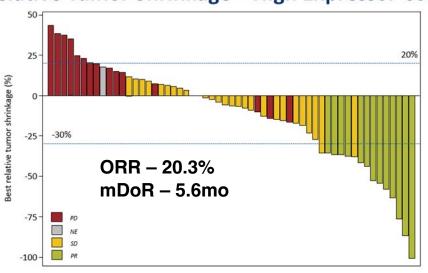
Best Percentage Change From Baseline in **Target Lesion**

Goldman et al. ASCO 2022



Other promising ADC targets in lung cancer

B7-H3


Ifinatamab deruxtecan (I-DXd) in ES-SCLC

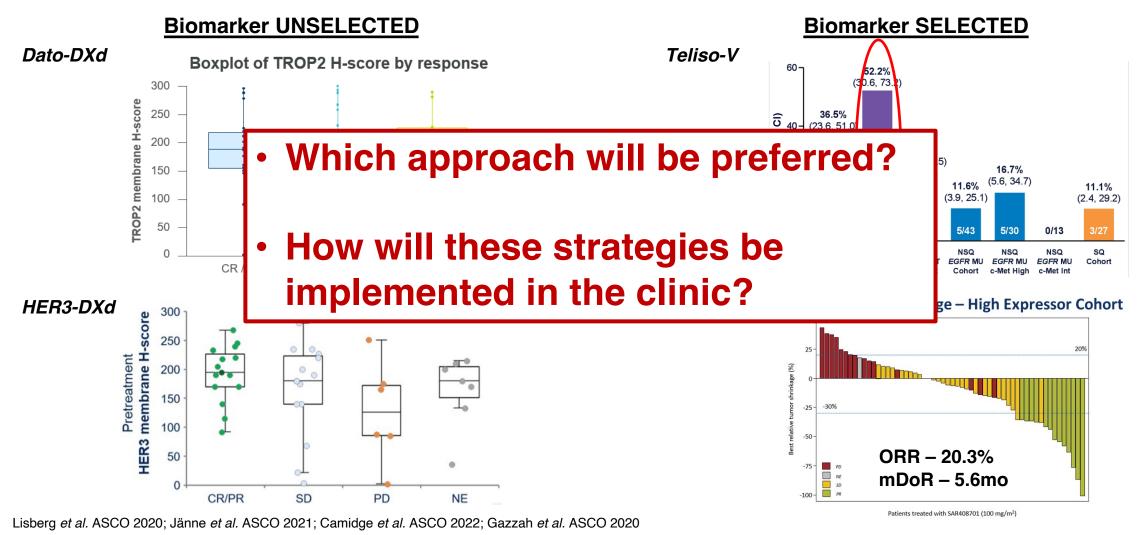
CEACAM5

Tusamitamab ravtansine (TUSA) in advanced NSCLC

Best Relative Tumor Shrinkage – High Expressor Cohort

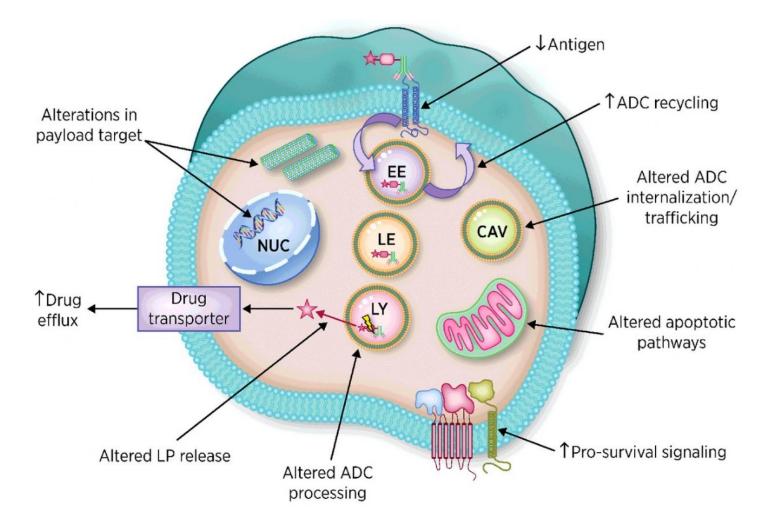
Patients treated with SAR408701 (100 mg/m²)

Other targets: NaPi2b, PTK7, mesothelin, tissue factor, nectin 4, folate receptor alpha


Doi et al. ESMO 2022; Gazzah ASCO 2020

ADCs Appropriate **Toxicity** implementation management? Biomarkers of into clinical Defining response? practice? mechanisms of resistance?

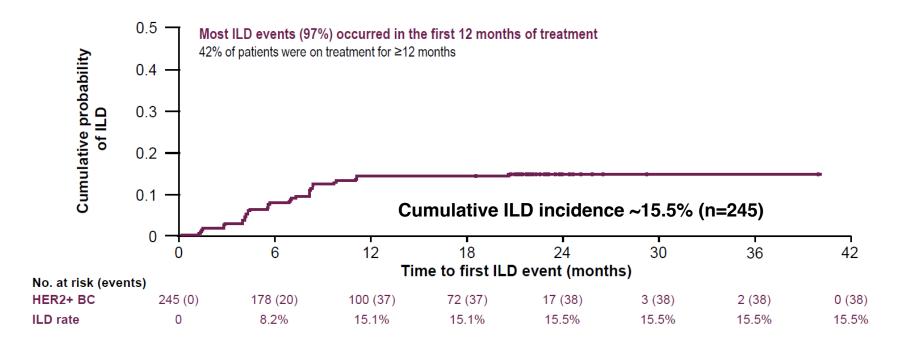
Defining appropriate predictive biomarkers for ADCs in NSCLC - where are we going?



Defining mechanisms of resistance to ADCs in NSCLC

Loganzo et al. Mol Cancer Ther 2016

Implementing effective management strategies for unique ADC-related adverse events



Majority of cases identified by investigators <u>after</u> being found by independent adjudication committee.

 43 of 44 cases occurred prior to implementation of updated toxicity management guidelines.

KAPLAN-MEIER ANALYSIS OF TIME TO FIRST ILD EVENT

The risk of all-grade ILD decreased after 12 months, as the cumulative probability of adjudicated drug-related ILD began to plateau at this point. Median time to first ILD event, 5.6 months (range, 1.1–20.8 months)

Powell et al. ESMO Breast 2021

Concluding Remarks

- ADCs are an emerging class of anti-cancer therapeutic in the treatment of advanced lung cancer, with T-DXd carrying an accelerated approval for subsequent line therapy in advanced HER2mutated NSCLC.
- Several agents carry FDA breakthrough designation, among which multiple phase 3 registrational studies are ongoing.
- Many questions remain: Appropriate biomarker selection, optimal sequencing, proper clinical implementation, toxicity management.

THANK YOU!

