

# BEST PRACTICES IN UNRESECTABLE NON-SMALL-CELL LUNG CANCER

### David R. Spigel, M.D.

**Chief Scientific Officer** 

Sarah Cannon Research Institute

March 31, 2023

Endorsed by





Presented by



### A Case: Mr. PP

# AUSTIN AN 2023

### <u>HPI</u>

Mr. PP is a 76yo gentleman who presented with a cough and a 30lb weight loss to his PCP.

### <u>PMH</u>

DM2 HTN

### <u>SH</u>

Married (39 years) 6 children Heavy smoker - quit 26yrs ago





### Mr. PP

### **Evaluation:**

- ECOG PS 0
- CT/PET/MRI revealed a 5.5cm RLL lesion w/ satellite nodule and mediastinal, SCV, and hilar LAN. Brain negative.
- Path: squamous carcinoma (EBUS), Tempus NGS (TP53, FAT1, PTEN; MSS, TMB 13.7 Mut/Mb), PD-L1 0 (22C3)
- Stage IIIC (T3N3M0)

### Treatment:

Received carboplatin/paclitaxel and RT f/b enrollment on a clinical trial. Patients are randomized to durvalumab alone atezolizumab + tiragolumab (SKYSCRAPER-03)

Did well on durvalumab – in surveillance

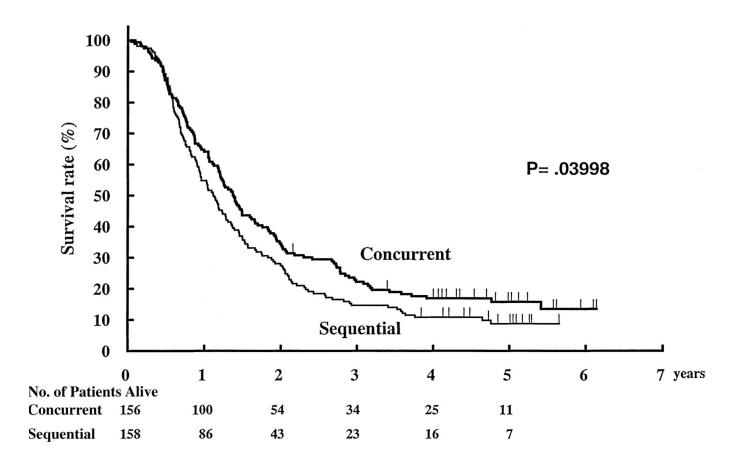











- Standard of Care for Unresectable Stage III NSCLC Before PACIFIC
- PACIFIC
- Future Development

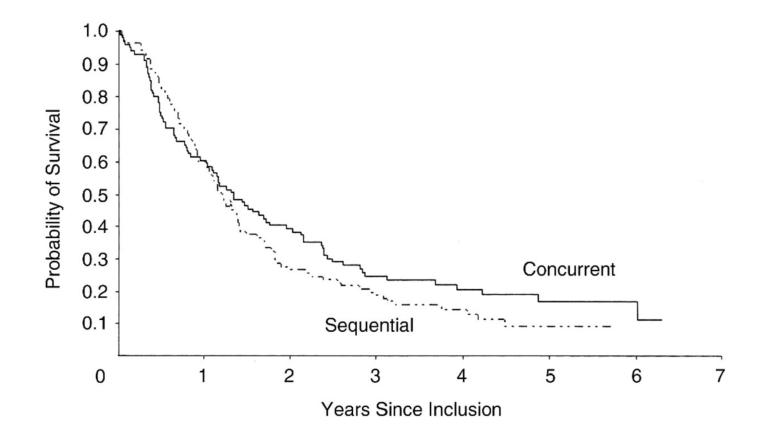






### Advances in Stage III NSCLC: Concurrent v. Sequential Chemoradiation




#### Furuse, JCO 1999

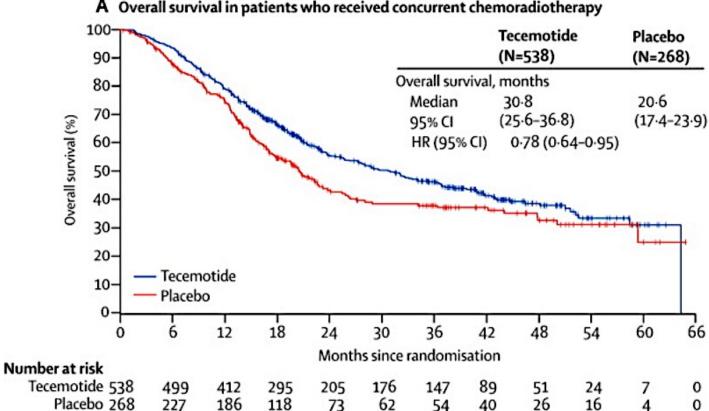






### Advances in Stage III NSCLC: Concurrent v. Sequential Chemoradiation




Fournel, JCO 2005





### **Tecemotide (L-BLP25) v placebo** after chemoradiotherapy for stage III NSCLC (START)





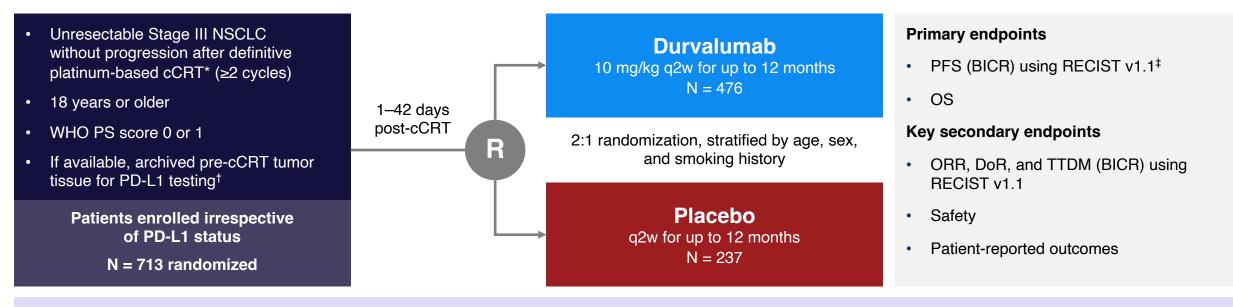
A Overall survival in patients who received concurrent chemoradiotherapy

Butts, Lancet Onc 2013





## PACIFIC


Endorsed by



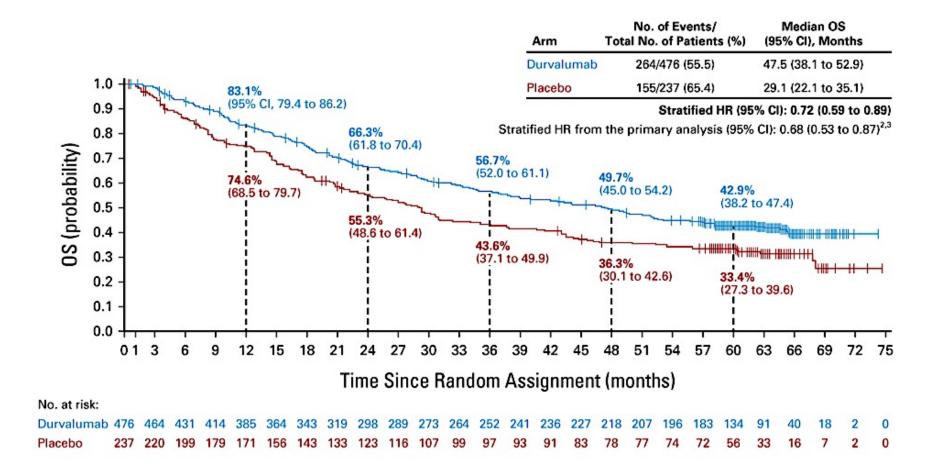
8

### PACIFIC: Phase 3, Randomized, Double-blind, Placebo-controlled, Multicenter, International Trial





- Updated analyses of OS and PFS, assessed ~5 years after the last patient was randomized (data cutoff: 11 January 2021; exploratory, post-hoc analysis)
  - Treatment effects were estimated using stratified log-rank tests in the ITT population
  - Medians and yearly landmark rates were estimated using the Kaplan–Meier method

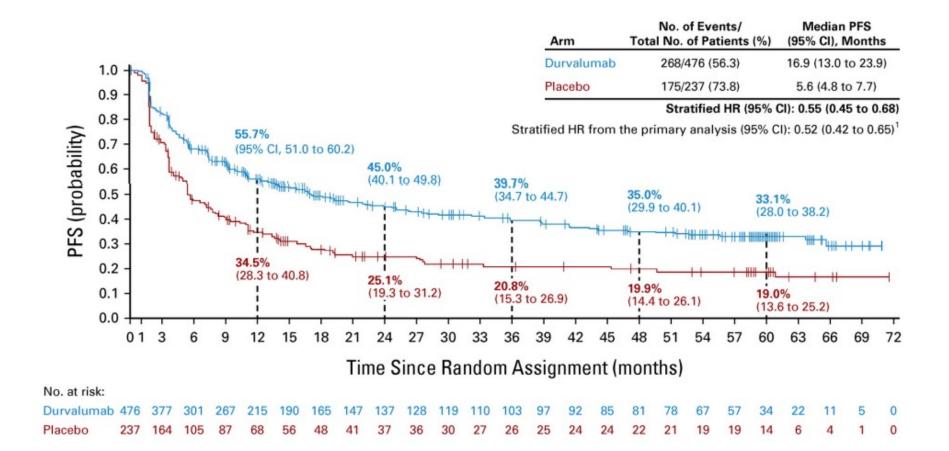

BICR, blinded independent central review; cCRT, concurrent chemoradiotherapy; DoR, duration of response; ITT, intent-to-treat; NSCLC, non-small-cell lung cancer; ORR, objective response rate; OS, overall survival; PD-L1, programmed cell death-ligand 1; PFS, progression-free survival; PS, performance status; q2w, every 2 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; WHO, World Health Organization Dr. David R. Spigel

NCT02125461. \*Radiation dosage typically 60–66 units of gray in 30–33 fractions. †Using the Ventana SP263 immunohistochemistry assay. ‡Defined as the time from randomization to the date of objective disease progression or death by any cause in the absence of progression



### **PACIFIC OS**






#### Spigel, JCO 2022



### **PACIFIC PFS**





#### Spigel, JCO 2022





### **PACIFIC: AEs (All Grade)**

| Event                              | Durvalur                                | nab (N=475)  | Placebo (N=234) |              |  |
|------------------------------------|-----------------------------------------|--------------|-----------------|--------------|--|
|                                    | Any Grade*                              | Grade 3 or 4 | Any Grade*      | Grade 3 or 4 |  |
|                                    | number of patients with event (percent) |              |                 |              |  |
| Any event                          | 460 (96.8)                              | 145 (30.5)   | 222 (94.9)      | 61 (26.1)    |  |
| Cough                              | 167 (35.2)                              | 2 (0.4)      | 59 (25.2)       | 1 (0.4)      |  |
| Fatigue                            | 114 (24.0)                              | 1 (0.2)      | 48 (20.5)       | 3 (1.3)      |  |
| Dyspnea                            | 106 (22.3)                              | 7 (1.5)      | 56 (23.9)       | 6 (2.6)      |  |
| Radiation pneumonitis <sup>†</sup> | 96 (20.2)                               | 7 (1.5)      | 37 (15.8)       | 1 (0.4)      |  |
| Diarrhea                           | 88 (18.5)                               | 3 (0.6)      | 46 (19.7)       | 3 (1.3)      |  |
| Pyrexia                            | 72 (15.2)                               | 1 (0.2)      | 22 (9.4)        | 0            |  |
| Nausea                             | 68 (14.3)                               | 0            | 31 (13.2)       | 0            |  |
| Decreased appetite                 | 68 (14.3)                               | 1 (0.2)      | 30 (12.8)       | 2 (0.9)      |  |
| Pneumonia                          | 63 (13.3)                               | 21 (4.4)     | 18 (7.7)        | 9 (3.8)      |  |
| Pneumonitis <sup>†</sup>           | 60 (12.6)                               | 9 (1.9)      | 18 (7.7)        | 4 (1.7)      |  |
| Arthralgia                         | 59 (12.4)                               | 0            | 26 (11.1)       | 0            |  |
| Upper respiratory tract infection  | 59 (12.4)                               | 1 (0.2)      | 24 (10.3)       | 0            |  |
| Pruritus                           | 59 (12.4)                               | 0            | 12 (5.1)        | 0            |  |
| Rash                               | 58 (12.2)                               | 1 (0.2)      | 18 (7.7)        | 0            |  |
| Constipation                       | 56 (11.8)                               | 1 (0.2)      | 20 (8.5)        | 0            |  |
| Hypothyroidism                     | 55 (11.6)                               | 1 (0.2)      | 4 (1.7)         | 0            |  |
| Headache                           | 52 (10.9)                               | 1 (0.2)      | 21 (9.0)        | 2 (0.9)      |  |
| Asthenia                           | 51 (10.7)                               | 3 (0.6)      | 31 (13.2)       | 1 (0.4)      |  |
| Back pain                          | 50 (10.5)                               | 1 (0.2)      | 27 (11.5)       | 1 (0.4)      |  |
| Musculoskeletal pain               | 39 (8.2)                                | 3 (0.6)      | 24 (10.3)       | 1 (0.4)      |  |
| Anemia                             | 36 (7.6)                                | 14 (2.9)     | 26 (11.1)       | 8 (3.4)      |  |



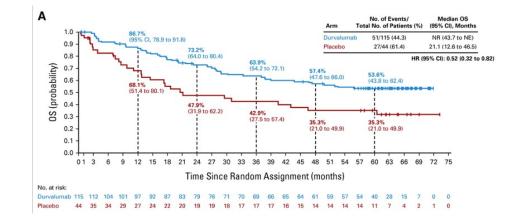




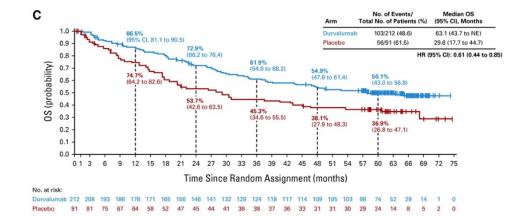
### PACIFIC EGFR, ALK, and PD-L1 Subsets

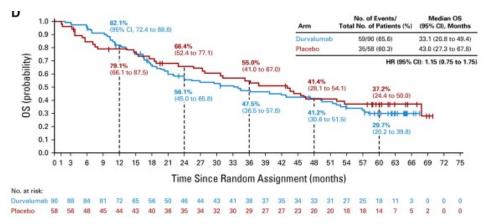


| Positive <sup>d</sup>      | 17/29 (58.6)   | 8/14 (57.1)    |                     | $\rightarrow$ | 0.85 (0.37 to 1.97) |
|----------------------------|----------------|----------------|---------------------|---------------|---------------------|
| Negative                   | 166/317 (52.4) | 109/165 (66.1) | <b>———</b>          |               | 0.66 (0.52 to 0.84) |
| Unknown                    | 81/130 (62.3)  | 38/58 (65.5)   |                     |               | 0.85 (0.57 to 1.24) |
| PD-L1 expression level     |                |                |                     |               |                     |
| ≥ 25%                      | 51/115 (44.3)  | 27/44 (61.4)   | H                   |               | 0.52 (0.32 to 0.82) |
| < 25%                      | 111/187 (59.4) | 64/105 (61.0)  |                     |               | 0.90 (0.67 to 1.23) |
| Unknown                    | 102/174 (58.6) | 64/88 (72.7)   | <b>—</b>            |               | 0.68 (0.50 to 0.93) |
| 1%-24% (post hoc analysis) | 52/97 (53.6)   | 29/47 (61.7)   |                     |               | 0.73 (0.46 to 1.14) |
| ≥ 1% (post hoc analysis)   | 103/212 (48.6) | 56/91 (61.5)   | <b>———</b>          |               | 0.61 (0.44 to 0.85) |
| < 1% (post hoc analysis)   | 59/90 (65.6)   | 35/58 (60.3)   |                     |               | 1.15 (0.75 to 1.75) |
|                            |                | 0.2            | 0.4 0.6 0.8 1.0 1.2 | 1.4 1.6 1.8   | 3                   |


Spigel, JCO 2022







### **PACIFIC PD-L1 Subsets**





PD-L1 >25%





Spigel, JCO 2022

PD-L1 <1%




Speaker: David R. Spigel, MD, Sarah Cannon Research Institute

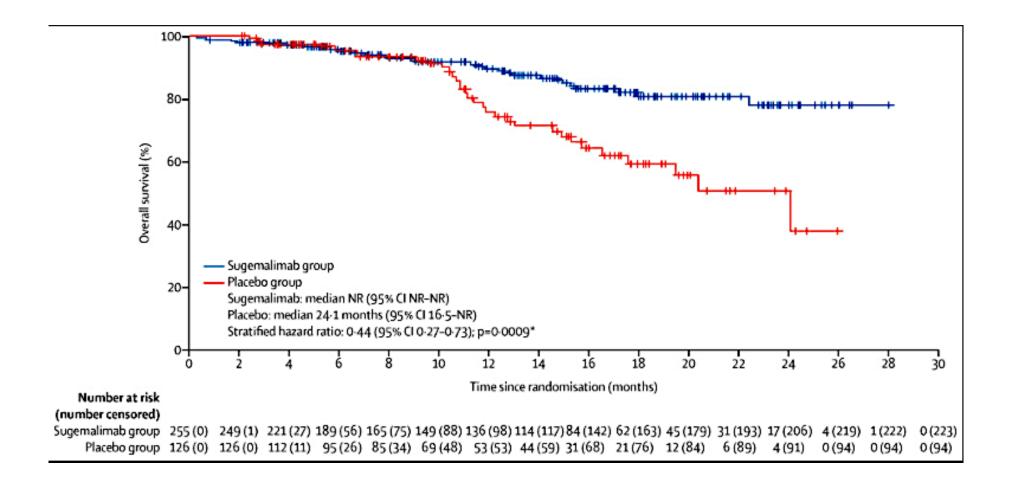
PD-L1 >1%



### PACIFIC EGFR Subset (post hoc)






Naidoo, ASCO 2022





### **GEMSTONE-301**



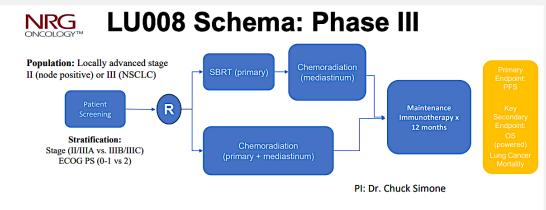


#### Zhou, Lan Onc 2022







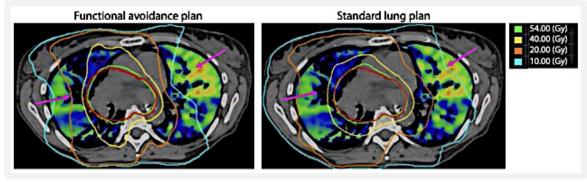

# FUTURE DEVELOPMENT IN UNRESECTABLE STAGE III NSCLC

Endorsed by

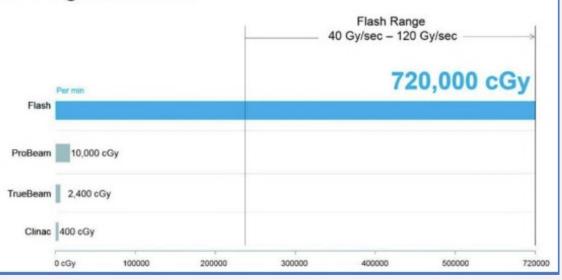


### **Advances in Radiation**

- Proton Therapy (RTOG 1308)
- Esoph sparing/Ventilation Mapping
- FLASH
- RT + Drug Synergies

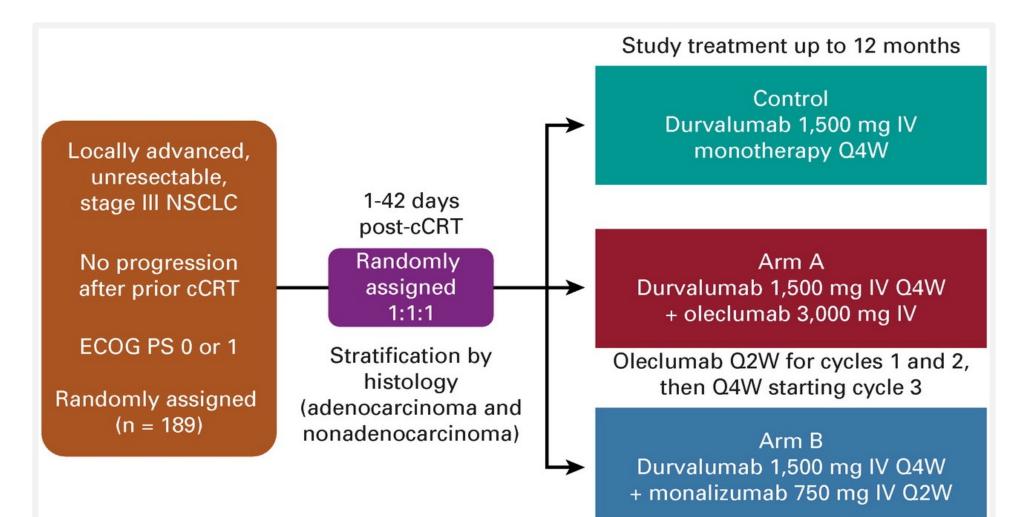



- Control arm: chemoradiation to the primary and mediastinal disease (60 Gy/2 Gy) → immunotherapy maintenance x 12 months
  Experimental arm: SBRT to the primary (standard BED ≥100 Gy dose regimen) → chemoradiation to mediastinal disease (60 Gy/2 Gy) →
  - immunotherapy maintenance x 12 months
  - SBRT to primary tumor:
    - 3 fractions to 54 Gy (BED10 of 151.2 Gy) [peripheral]
    - 4 fractions to 50 Gy (BED10 of 112.5 Gy) [peripheral or central]
    - 5 fractions to 50 Gy (BED10 of 100 Gy) [central] or to 60 Gy (BED10 of 132 Gy) [peripheral or central]


Vinogradskiy, IJRO 2021 Fauvodon, Sci Trans Med 2014







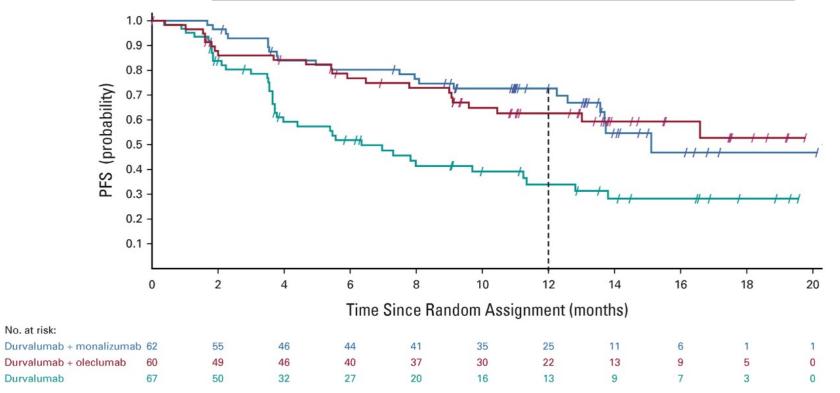

#### Ultra high dose rates



### Advances in Immunotherapy: COAST






Herbst, JCO 2022

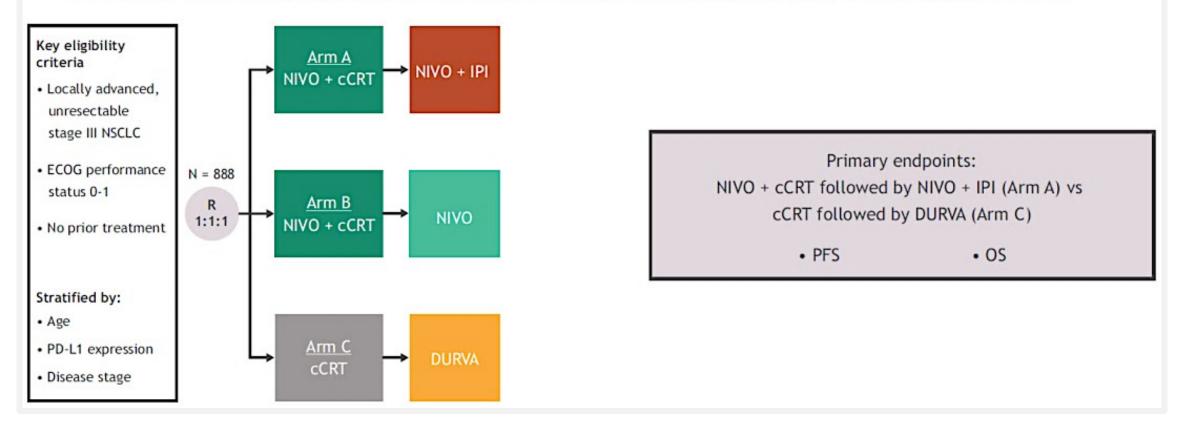


### **COAST PFS**



| Treatment Arm            | No. of Events/<br>Total No. of<br>Patients (%) | Median PFS,<br>Months<br>(95% Cl) <sup>a</sup> | 12-Month PFS<br>Rate, % (95% CI) | HR, % (95% Cl) <sup>b,c</sup> |
|--------------------------|------------------------------------------------|------------------------------------------------|----------------------------------|-------------------------------|
| Durvalumab + monalizumab | 21/62 (33.9)                                   | 15.1 (13.6 to NE)                              | 72.7 (58.8 to 82.6)              | 0.42 (0.24 to 0.72)           |
| Durvalumab + oleclumab   | 22/60 (36.7)                                   | NR (10.4 to NE)                                | 62.6 (48.1 to 74.2)              | 0.44 (0.26 to 0.75)           |
| Durvalumab               | 38/67 (56.7)                                   | 6.3 (3.7 to 11.2)                              | 33.9 (21.2 to 47.1)              |                               |



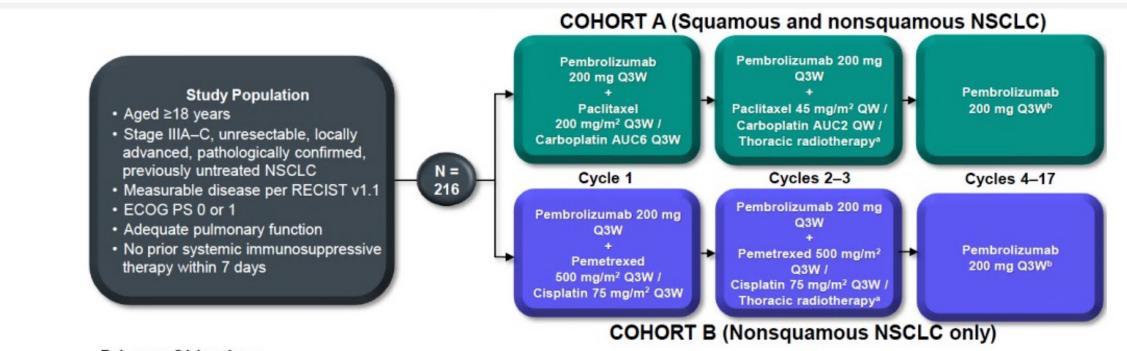

#### Herbst, JCO 2022



### **Checkmate 73L**



A phase 3 study comparing nivolumab plus concurrent CRT followed by nivolumab ± ipilimumab versus cCRT followed by durvalumab for previously untreated, locally advanced stage III NSCLC








### **KEYNOTE 799**



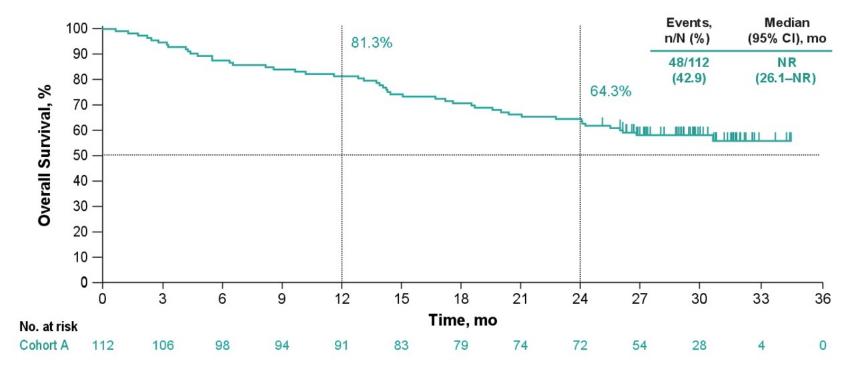


#### **Primary Objectives**

- ORR per RECIST version 1.1 by BICR
- Percentage of patients who develop grade ≥3 pneumonitis
  Secondary Objectives
- PFS, OS, safety

#### **Statistical Analysis Details**

- Efficacy assessed in all patients with first study dose before or on October 31, 2019 (PE population)
- Safety assessed in all patients in the as-treated population


Reck, ASCO 2022



### **KEYNOTE 799 – Overall Survival**



#### A. Cohort A (squamous and nonsquamous histology)



#### Reck, ASCO 2022





### **KEYNOTE 799 – Safety**



#### Table 4. Adverse event summary

| Cohort Aª<br>(n = 112)      | Cohort B <sup>b</sup><br>(n = 102)                                                                                                                                          |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9 (8.0)                     | 7 (6.9)                                                                                                                                                                     |
| 105 (93.8)                  | 99 (97.1)                                                                                                                                                                   |
| 72 (64.3)                   | 52 (51.0)                                                                                                                                                                   |
|                             |                                                                                                                                                                             |
| 18 (16.1)                   | 10 (9.8)                                                                                                                                                                    |
| 12 (10.7)                   | 4 (3.9)                                                                                                                                                                     |
| <b>4 (3.6)</b> <sup>d</sup> | 1 (1.0) <sup>e</sup>                                                                                                                                                        |
| 38 (33.9)                   | 21 (20.6)                                                                                                                                                                   |
| 58 (51.8)                   | 46 (45.1)                                                                                                                                                                   |
| 18 (16.1)                   | 9 (8.8)                                                                                                                                                                     |
|                             |                                                                                                                                                                             |
| 7 (6.3)                     | 6 (5.9)                                                                                                                                                                     |
| <b>4 (3.6)</b> <sup>d</sup> | 1 (1.0) <sup>e</sup>                                                                                                                                                        |
| 21 (18.8)                   | 12 (11.8)                                                                                                                                                                   |
|                             | (n = 112)<br>9 (8.0)<br>105 (93.8)<br>72 (64.3)<br>18 (16.1)<br>12 (10.7)<br>4 (3.6) <sup>d</sup><br>38 (33.9)<br>58 (51.8)<br>18 (16.1)<br>7 (6.3)<br>4 (3.6) <sup>d</sup> |

<sup>a</sup>Squamous and nonsquamous histology.

<sup>b</sup>N onsquamous histology only.


\*Coprimary endpoint; includes immune-mediated AE of "pneumonitis" and the Medical Dictionary for Regulatory Activities (MedDRA) preferred term of "radiation pneumonitis".

4 patients died due to treatment-related pneumonitis.

e1 patient died due to treatment-related interstitial lung disease.

#### Reck, ASCO 2022





### **Ongoing Phase III Trials in Unresectable NSCLC**



### NCT03521154 (LAURA)

Osimertinib after ChemoRT in EGFRm

### NCT04513925 (SKYSCRAPER-03)

Atezolizumab + Tiragolumab (Anti-TIGIT Ab) v. Durvalumab after ChemoRT

### NCT04951635

Almonertinib (3rd-Gen EGFR Inhibitor) after ChemoRT in EGFRm

### NCT05221840 (PACIFIC-9)

Oleclumab (Anti-CD73 Ab) + Durvalumab v. Monalizumab (NKG2A Ab) + Durvalumab after ChemoRT

### NCT03519971

Concurrent Durvalumab and ChemoRT





### **Ongoing Phase III Trials in Unresectable NSCLC**



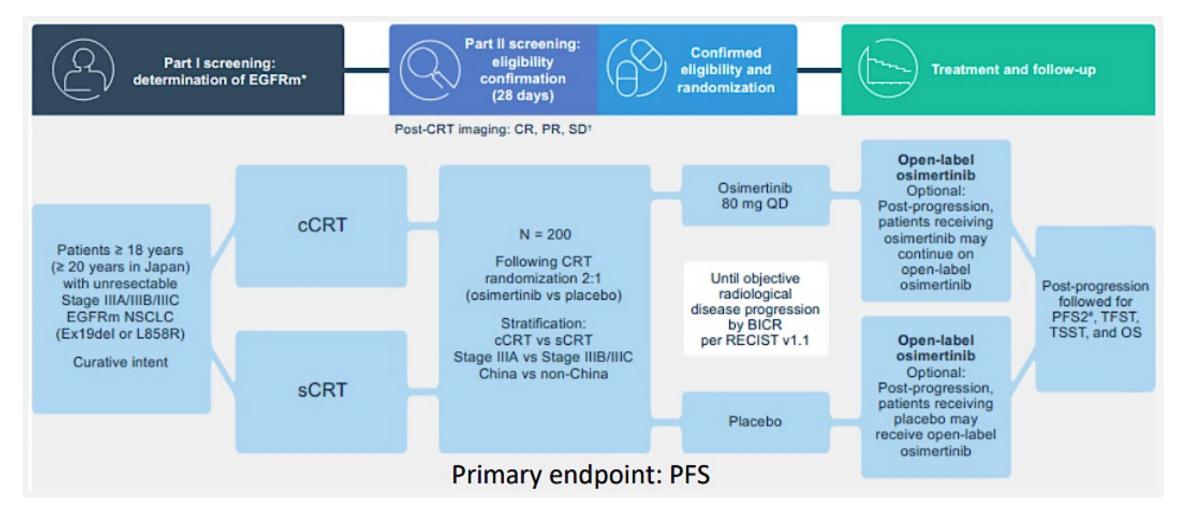
### NCT05211895 (PACIFIC-8)

Durvalumab + Domvanalimab (Anti-TIGIT Ab) after ChemoRT

### NCT04866017

Tislelizumab (Anti-PD1) + Ocimerlimab (Anti-TIGIT Ab) v. Tislelizumab v. Durvalumab after ChemoRT

### NCT04380636 (KEYLYNK-012)


Pembrolizumab + Concurrent ChemoRT followed by Pembrolizumab +/- Olaparib





LAURA





#### Lu, ESMO 2020



### ctDNA and Disease Monitoring

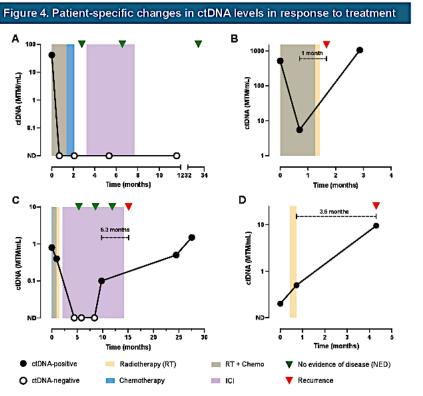
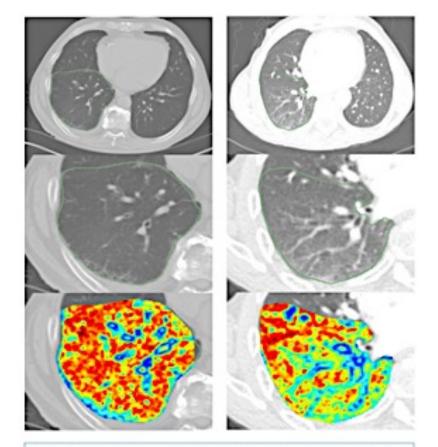



Figure 4. For stage I-III NSCLC patients undergoing RT+/- chemotherapy, ctDNA serves as a prognostic biomarker for disease progression. A. ctDNA clearance indicates response to RT+/- chemotherapy. B-D. ctDNA detection at the end of treatment or during follow-up period precedes radiographic disease recurrence. RT: radiotherapy, ICI: immune checkpoint inhibitors.

- ctDNA detection in patients with stage I-III NSCLC undergoing definitive RT +/- chemotherapy/immunotherapy is feasible and showed a baseline detection rate of 82%.
- Post-definitive RT ctDNA status is highly prognostic of DRFS at single time point (HR=19.9; p=0.007) and longitudinally (p=0.0002; sensitivity=100%, specificity=100%).
- ctDNA can detect disease progression with an average lead-time of 5.4 months over radiographic imaging. When monitored serially, ctDNA detection at any time point is a preditor of recurrence and can identify patients who may benefit from treatment intensification.
- In univariate and multivariate analyses, ctDNA detection at post-RT time point was a strong prognostic factor associated with DRFS.


#### Lebow, ASCO 2022





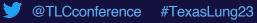
### **Radiomics and Pneumonitis**





(above): Segmented pneumonitis regions and heat map of Haralick entropy feature in the post-treatment CT scans for IOP (first column) and RTP (second column) patients. The texture heat maps appear to suggest higher textural entropy values for IOP compared with the RTP.

Delasos, ASCO 2022




### Summary



- CRT f/b Durvalumab is SOC in Unresectable Stage III NSCLC
- IO requires careful selection and monitoring for pneumonitis
- PD-L1 Prediction of IO Benefit is Unclear
- Many Ongoing Studies: Concurrent IO and CRT, New IO Combinations, and Osimertinib instead of IO in Patients with EGFRm



