

TOXICITY AND CONTRAINDICATIONS FOR IMMUNOTHERAPY IN NSCLC

Sheena Bhalla, MD

UT Southwestern Medical Center

Harold C. Simmons Comprehensive Cancer Center

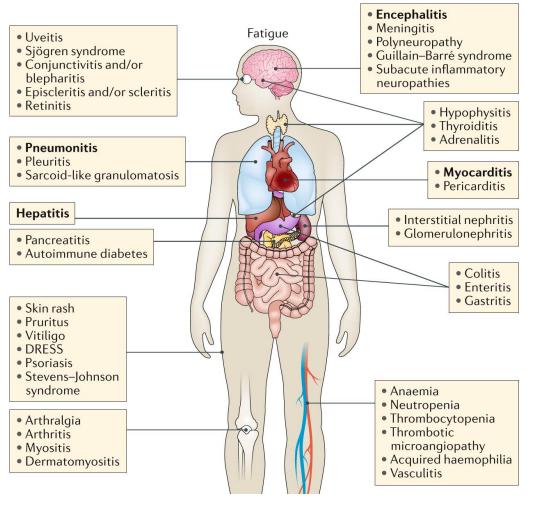
@SheenaBhallaMD April 20, 2024

Endorsed by

Presented by

Few questions that arise as we take care of patients with NSCLC

- Can we predict who will develop immune-related adverse events?
- When can we rechallenge with ICI after occurrence of immune toxicity?
- What is the role of ICIs in special populations, such as patients with autoimmune disorders and solid organ transplants?
- Do patients who experience immune-related adverse events live longer?

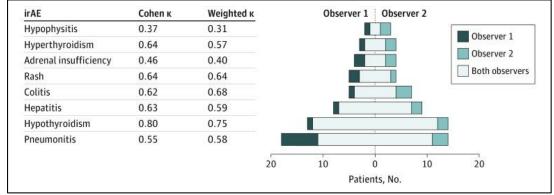


Immune-related adverse events are unpredictable, potentially severe, and can affect any organ system

- Most common irAEs in NSCLC: thyroiditis, pneumonitis, colitis, derm toxicities, hepatitis
- Incidence any grade irAEs between 20%-50% and ≥ grade 2 irAEs between 3-12%
- Variation represents heterogeneity in study setting, patient characteristics, treatment parameters, irAE grading
- While most irAEs are mild/reversible, irAEs may cause substantial or even permanent morbidity and may be fatal in ~1% of patients

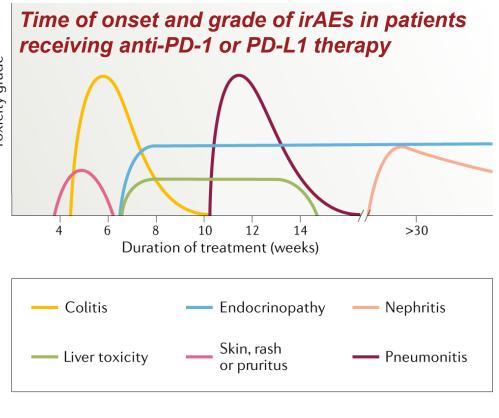
Martin F, et al. Nat Rev Clin Oncol, 2019; Cook S, et al. JAMA Netw Open, 2024

Despite our clinical experience with immunotherapy, prediction and diagnosis of irAEs remains challenging

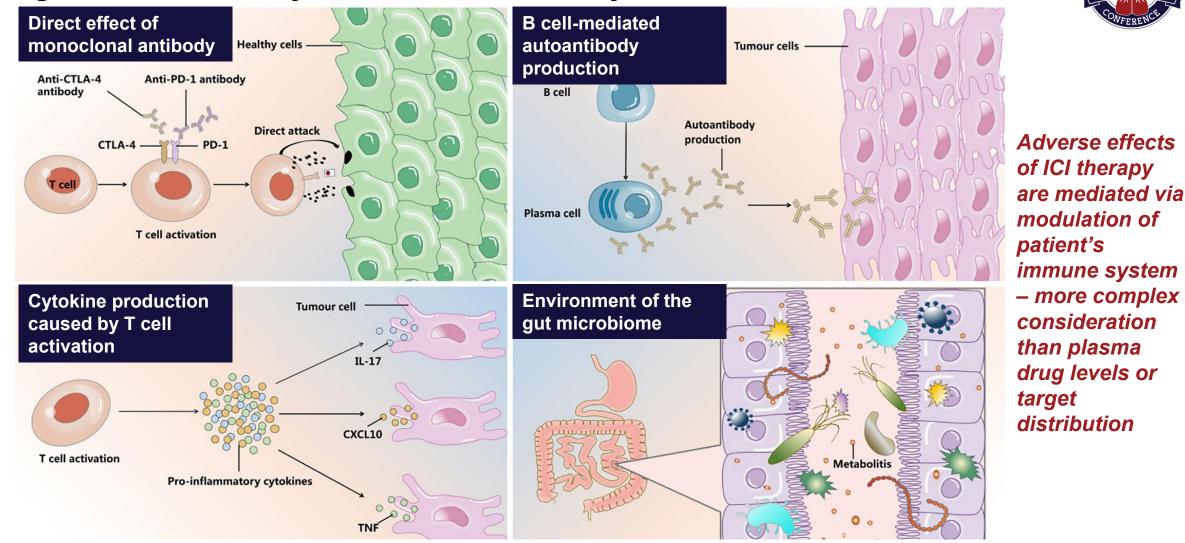

AUSTIN AND 2024

- Variety of predictive factors have been described – yet other than autoimmune disease, no clinical parameters routinely used to predict risk
- Conflicting data regarding risk factors
- Apart from hypothyroidism, interobserver agreement of irAE occurrence and grading is poor

Chennamadhavuni A, et al. Front Immunol, 2022; Hsiehchen D, et al. JAMA Netw Open, 2019

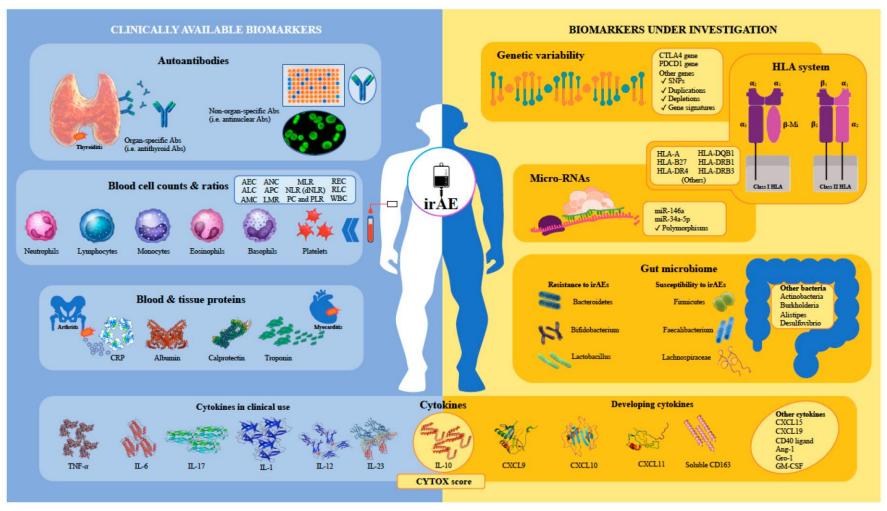


Although characteristic temporal windows of occurrence exist, irAEs can occur at any point throughout ICI therapy, even after treatment discontinuation


System	Toxicities	Time to toxicity onset (median, range)	
Pulmonary	Pneumonitis	11-34 wk (1.5-127 wk)	grade
Cardiac	Myocarditis, pericarditis, arrhythmias, vasculitis	6 wk (2-54 wk)	Toxicity grade
Endocrine	Hypothyroidism, thyrotoxicosis, primary adrenal insufficiency, hypophysitis, diabetes	14.5 wk (1.5-130 wk)	
Cutaneous	Inflammatory dermatoses, bullous dermatoses, severe cutaneous adverse reactions	4.5 wk (2-150 wk)	
Renal	Immune-related AKI, nephritis	14 wk (6.5-21 wk)	.
GI	Hepatitis, colitis, gastritis, enterocolitis, esophagitis	6 wk (1-107.5 wk)	
Neurologic	Myasthenia gravis, aseptic meningitis, encephalitis, Guillain-Barre-like syndrome	4 wk (1-68 wk)	Martin F

Martin F, et al. Nat Rev Clin Oncol, 2019; O'Leary CL, et al. J Thorac Oncol, 2024

@TLCconference #TexasLung24


Emergence and intensity of irAEs influenced by various immune mechanisms

Yan T, et al. Front Immunol, 2024

To improve patient safety and selection for ICI use, biomarkers for diagnosis and prediction of irAE are under investigation

Les I, et al. Cancers, 2023

- Screening biomarkers may be most useful if detectible few weeks before onset of clinical signs & symptoms (typical frequency of ICI administration and routine blood draws)
- Cytokines and autoantibodies are promising – can be measured frequently and have rapid turnaround time
- Larger prospective studies
 needed

Around 20% of patients with lung cancer have pre-existing autoimmune disorders and are often not included in clinical trials

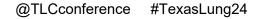
Select retrospective cohorts of patients with autoimmune disease (AID) treated with ICIs

	Leonardi et al	Khozin et al	Danios et al	Cortellini et al
Tumor types	NSCLC	NSCLC	Multiple (16% NSCLC)	Multiple (66% NSCLC)
Patients with AID	56	531	45	85
Active AID	18%	NR	56%	18%
Treatment for AID	20%	NR	16%	17%
Flare AID	23%	NR	24%	47% patients may
irAEs / ≥grade 3 irAEs	38% / 11%	27% / NR	44% / 11%	66% / 9% experience AID flares
Discontinued	14%	NR	11%	7% AID Hares

- ICIs are reasonable in some patients with quiescent AID after discussion of risk-benefit ratio
- Incorporate multidisciplinary team to identify AID flares and implement early therapeutic intervention
- Prospective evaluation of ICIs with autoimmune disease underway NCT03816345

Khan S, et al. JAMA Oncol, 2017; Remon J, et al. J Thorac Oncol, 2019; Leonardi GC, et al. J Clin Oncol, 2018; Khozin S, et al. J Clin Oncol, 2019; Danlos FX, et al. Eur J Cancer, 2018; Cortellini A, et al. Oncologist, 2019.

ICIs in solid organ transplant (SOT) patients carries risk of allograft rejection

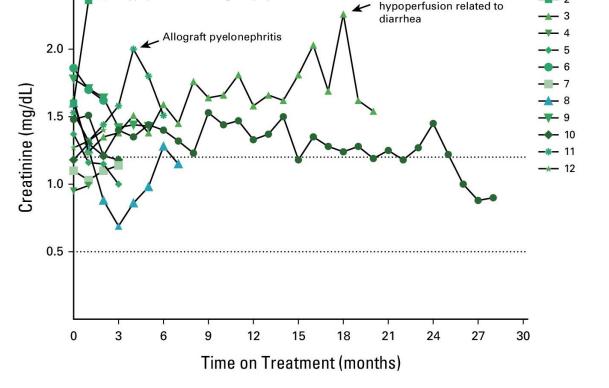


- Patients with SOT are excluded from clinical trials, yet at increased risk for cancer with chronic immunosuppression
- Review of 144 published cases suggests IO with retained transplant is feasible, particularly in patients with kidney transplants and among cutaneous cancers
- Patients treated with mTOR inhibitors have better outcomes

	Response rate	Response rate in patients with retained transplants
Transplant		
All transplants (n=130)	37%	31%
Kidney (n=90)	38%	29%
Non-Kidney (n=41)	34%	34%
Cancer		
Melanoma (n=58)	33%	28%
Non-Melanoma (n=72)	40%	33%
cSCC (n=32)	59%	50%
HCC (n=18)	22%	22%
NSCLC (n=8)	0%	0%

Runger A, et al, Eur J Cancer, 2022

Prospective studies of ICIs in SOT have primarily focused on kidney transplant recipients and cutaneous malignancies


2.5 -

Elevation attributed to

hypoperfusion during anaphylaxis

- Phase 1 study of cemiplimab for kidney transplant recipients with advanced cSCC
 - Treated with cemiplimab + everolimus or sirolimus and prednisone (pulse dosing)
 - Durable antitumor response and no kidney rejection events with mTOR inhibitor and steroid immunosuppression regimen
- Ongoing trial with ipilimumab + nivolumab with sirolimus and prednisone in similar population (NCT05896839)
- Future trials may explore the role of mTOR inhibitor conversion in organ transplant recipients with other advanced cancers...

Hanna GJ, et al. J Clin Oncol, 2024; Schenk KM, et al. J Clin Oncol, 2024

Elevation attributed to

INTERNATIONA

LUNG CANCER

ASSOCIATION

IASLC

What are the risks of rechallenge after prior immune toxicity?

Select retrospective studies assessing irAE recurrence after rechallenge in solid tumors including NSCLC

Study	Number of patients with irAE	Number of patients rechallenged	IO target	Patients with any irAE recurrence after rechallenge, %	Patients with identical irAE recurrence, %
Santini et al (2018)	68	38	PD-L1	52%	26%
Abu-Sbeih et al (2019)	167	167	CTLA-4, PD-1, PD-L1	N/A	34% About 1 in 3
Simonaggio et al (2019)	93	40	PD-1, PD-L1	55%	42% patients will have recurrence of
Allouchery et al (2020)	180	180	CTLA-4, PD-1, PD-L1	39%	29% the same irAE after
Dolladille et al (2020)	24,079	6,123	CTLA-4, PD-1, PD-L1	33%	29% rechallenge
Guo et al (2022)	1,051	40	CTLA-4, PD-1, PD-L1	60%	40%

Nakajima EC, et al. J Clin Oncol, 2019; Abu-Sbeih H, et al. J Clin Oncol, 2019; Santini FC, et al. Cancer Immunol Res, 2018; Simonaggio A, et al. JAMA Oncol 2019; Allouchery M, et al. J Immunother Cancer, 2020; Dolladille C, et al. JAMA Oncol, 2020; Guo M, et al. Clin Lung Cancer, 2022

With some exceptions, resumption of IO following grade 2-3 irAE can be considered once resolution to ≤ grade 1

- Recurrent or new irAEs are typically grade 1-2
- Recurrent/new irAEs more common among
 - Anti-CTLA-4 regimen
 - Colitis, hepatitis, and pneumonitis
 - Hospitalization for initial irAE
 - Complete or partial response

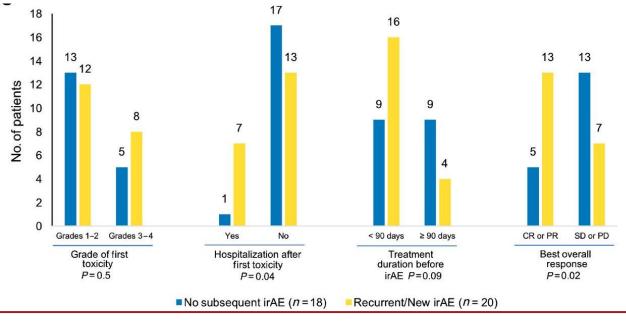
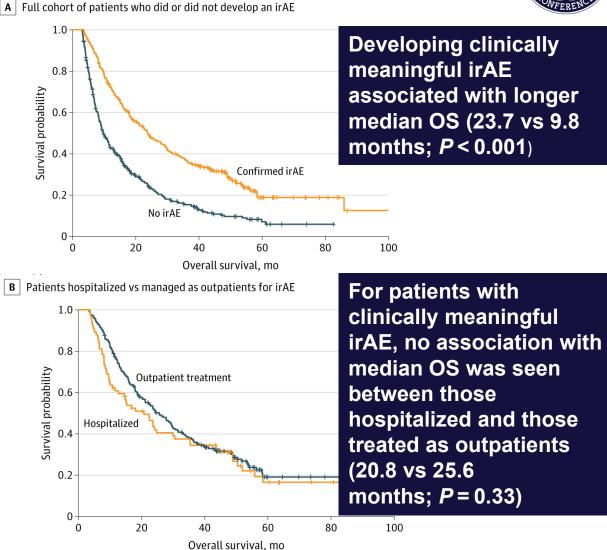


Table 2. Factors Associated With the Recurrence of the Same Immune-Related Adverse Event

	No. (%)		Reporting OR (95% CI)		
Initial irAE	Recurrence after ICI rechallenge (n = 130)	No recurrence after ICI rechallenge (n = 322)	Univariate analysis	Multivariate analysis	
ICI					
Anti-PD-1 or anti-PD-L1 alone	105 (80.8)	265 (82.3)	0.9 (0.54-1.52)	NA	
Anti-CTLA-4 alone	7 (5.4)	15 (4.7)	1.16 (0.46-2.93)	3.5 (1.05-11.64)	
Combination therapy	18 (13.8)	42 (13.0)	1.07 (0.59-1.94)	NA	
Type of initial irAE ^a					
Adrenal	5 (3.8)	35 (10.9)	0.33 (0.13-0.86)	NA	
Arthritis	13 (10.0)	16 (5.0)	2.12 (0.99-4.55)	NA	
Colitis	47 (36.2)	78 (24.2)	1.77 (1.14-2.75)	2.99 (1.60-5.59)	
Diabetes	0	13 (4.0)	NA	NA	
Hematological	3 (2.3)	7 (2.2)	1.06 (0.27-4.18)	NA	
Hepatitis	11 (8.5)	22 (6.8)	1.26 (0.59-2.68)	3.38 (1.31-8.74)	
Hypophysitis	6 (4.6)	17 (5.3)	0.87 (0.33-2.25)	NA	
Mucositis	2 (1.5)	3 (0.9)	1.66 (0.27-10.06)	NA	
Myocarditis	0	3 (0.9)	NA		
Myositis	2 (1.5)	7 (2.2)	0.7 (0.14-3.43)	NA	
Nephritis	4 (3.1)	4 (1.2)	2.52 (0.62-10.25)	4.92 (0.94-25.64)	
Neurological	3 (2.3)	16 (5.0)	0.45 (0.13-1.58)	NA	
Pancreatitis	3 (2.3)	11 (3.4)	0.67 (0.18-2.43)	NA	
Pneumonitis	36 (27.7)	67 (20.8)	1.46 (0.91-2.33)	2.26 (1.18-4.32)	
Skin	6 (4.6)	10 (3.1)	1.51 (0.54-4.24)	3.21 (0.81-12.75)	
Thyroiditis	11 (8.5)	50 (15.5)	0.5 (0.25-1.00)	0.37 (0.12-1.16)	
Uveitis	1 (0.8)	10 (3.1)	0.24 (0.03-1.91)	NA	
Vasculitis	1 (0.8)	0	NA	NA	

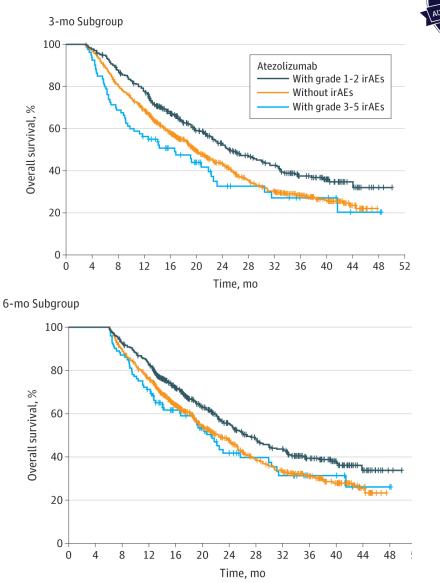
Santini FC, et al. Cancer Immunol Res, 2018; Dolladille C, et al. JAMA Oncol, 2020



Development of irAEs may be associated with improved OS in advanced NSCLC

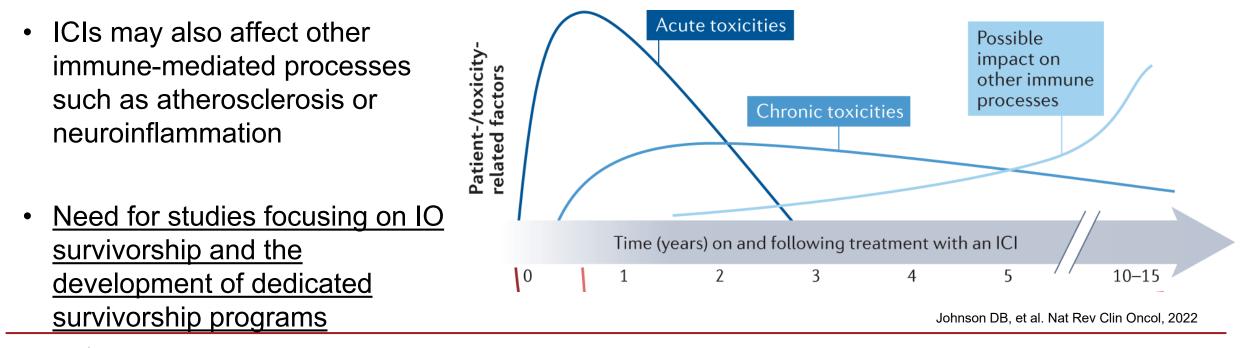
- Cohort study using Alberta Immunotherapy Database evaluating association between "clinically meaningful" irAEs and OS in 803 patients with advanced NSCLC receiving ICIs
- Clinically meaningful irAEs (mandating delay or discontinuation of ICI therapy and/or steroids) occurred in 37% of patients
- Nearly 1/3 of all clinically meaningful irAEs resulted in hospitalization (>50% pneumonitis)
- Adjusting for established prognostic factors, developing irAE remained independently associated with longer OS

Cook, S, et al. JAMA Netw Open, 2024



However – irAE severity may impact survival

- Pooled data from IMpower130, IMpower132, and IMpower150 to evaluate association between irAEs and atezolizumab efficacy
- Patients in atezo arm with grade 3-5 irAEs had shorter OS than those with grade 1-2 irAEs or no irAEs
- High grade irAEs may indicate presence of T cells that are more responsive to ICIs, yet can also be life threatening, require treatment discontinuation or immunosuppression, which may antagonize the effect of ICIs



Socinsky MA, et al. JAMA Oncol, 2023

With expanding indications for ICIs in NSCLC, including neoadjuvant and adjuvant settings, need to better understand and manage chronic irAEs

- Chronic irAEs can be defined as persisting >12 weeks after discontinuation of ICI
- Ongoing irAEs in up to 40% of patients, with endocrinopathies, arthritis, xerostomia, neurotoxicities and ocular events more likely to become chronic toxicities

Key Takeaways

- Predicting which patients will develop irAEs remains challenging, and a variety of biomarkers are under investigation
- ICIs are reasonable in some patients with well-managed and/or inactive AID, however risk of AID flare may be up to 50%
- About 1 in 3 patients will have recurrence of the same irAE after ICI rechallenge, but recurrent or new irAEs are typically grade 1-2 and manageable with standard treatment algorithms
- Recent studies suggest that development of irAEs is associated with improved OS in advanced lung cancer
- With expanding indications for ICIs in NSCLC, critical need for studies focusing on survivorship and development of dedicated survivorship programs

