

"RARE" FUSIONS IN LUNG CANCER

Alexander Drilon MD

Chief, Early Drug Development Service Memorial Sloan Kettering Cancer Center, NY

Endorsed by

Several fusion-driven lung cancers are technically classified as "rare"

Rare (34%) KRAS G12C/D/V mutation (23%)(21%) Other genes (22%)

Harada et al, Nat Rev Clin Oncol 2023

As lung cancer is a common cancer, "rare" subsets are not as uncommon as you think

The estimated incidence of *RET* and *ROS1* fusion-positive lung cancer exceeds 2,000 cases a year.

Harada et al, Nat Rev Clin Oncol 2023

Calling a cancer "rare" may lead to deemphasis of optimal testing strategies

Harada et al, Nat Rev Clin Oncol 2023

Many different oncogenic fusion types exist

Harada et al, Nat Rev Clin Oncol 2023

For advanced NSCLCs with *RET*, *ROS1*, and *NTRK* fusions, 1st line TKI therapy is standard

Advanced *RET, ROS1, NTRK* fusionpositive lung cancer

- RET: selpercatinib or pralsetinib
- *ROS1*: repotrectinib, entrectinib, or crizotinib
- NTRK1/2/3: larotrectinib, or entrectinib

TKI therapy for *RET* fusion-positive lung cancers is highly active

Drilon et al, NEJM 2020; Gainor et al, ASCO 2020; Drilon et al, J Clin Oncol 2022; Griesinger et al Ann Oncol 2022; *Drilon et al, N Engl J Med 2020; *Gainor et al, Lancet Oncol 2021

TKI therapy for *ROS1* fusion-positive lung cancers is highly active

PFS (months)

Wu et al JCO 2018, Drilon et al JTO CRR 2022, Drilon et al NEJM 2024

TKI therapy for *NTRK1/2/3* fusion-positive lung cancers is highly active

Lung cancer targeted therapy exploration has supported tumor-agnostic drug approvals

*adults, 36 pediatric ORR 25%; a supported by 343 thyroid/lung pts; unpublished, do not reproduce

Targeted therapy has not yet been approved for *NRG1* fusion-positive lung cancers

NRG1 fusion-positive lung cancers are biologically distinct, targeted therapy is active

Schram at al ESMO 2023, Carrizosa et al, ASCO 2022

*combinations of the above may occur

Fusion-positive lung cancers can acquire resistance mutations in response to TKI therapy

Schram et al, NRCO 2017

Speaker: Alexander Drilon MD, @alexdrilon

Next-generation TKIs are currently approved or in trials for patients with PD on a 1st line TKI

(post crizotinib/entrectinib)

clinical trials

Repotrectinib is active in *ROS1* fusion-positive lung cancers with prior PD on a TKI

IASLC CONTRACTIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER CONTRACTOR

Speaker: Alexander Drilon MD, @alexdrilon

Drilon et al, NEJM 2024

Targeted therapy resistance can take many forms

*combinations of the above may occur

Selpercatinib and crizotinib combination rescues *MET* amplification-mediated resistance to selpercatinib in a patient with a *RET* fusion-positive lung cancer

Rosen et al, CCR 2020

Side effects of TKIs for fusion-positive lung cancers depend on the kinases inhibited

Drilon et al NRCO 2021

Summary

Fusion	Choice for 1 st Line Targeted Therapy	Choice for Later Line Targeted Therapy
RET	Selpercatinib Pralsetinib	Clinical trial (e.g., APS03118, EP0031-101)
ROS1	Repotrectinib Entrectinib Crizotinib	Repotrectinib (if not previously received) Lorlatinib (NCCN guidelines) Clinical trial (e.g., taletrectinib, NVL-520)
NTRK	Larotrectinib Entrectinib	Clinical trial (e.g., repotrectinib, zurletrectinib, SIM1803)
NRG1	Clinical trial (e.g., zenocutuzumab, seribantumab)	_

