

ANTIBODY-DRUG CONJUGATES (ADCs) IN LUNG CANCER: A TRANSFORMATIVE THERAPEUTIC CLASS?

Joshua E. Reuss, MD

Georgetown University

April 20, 2024

Endorsed by

Accredited by

Postgraduate Institute for Medicine Professional Excellence in Medical Education Presented by

ADCs in Lung Cancer – superheroes we need?

Passaro et al. J Clin Oncol 2023

Speaker: Joshua E. Reuss, MD – Georgetown University

ADCs ASSEMBLE!

Antibody-Target

- Target selectively expressed or over-expressed on tumor cells.
- Antibody Human or humanized immunoglobulin, IgG1 most common.
- High internalization capacity.

<u>Linker</u>

- Non-cleavable.
 - Traffic to mature lysosomes for degradation.
 - Limited "bystander effect".
- Cleavable.
 - Cell physiology key to payload-linker uncoupling.
 - Prominent "bystander effect".

<u>Payload</u>

- Highly potency cytotoxin including DNA damaging agents (PBD, calicheamicin), tubulin polymerization inhibitors (MMAE, DM1), and topoisomerase inhibitors (DXd).
- Drug-antibody ratio: number of payloads attached to an antibody.

Mechanism of Action

 Payload delivery, ADCC, complement-mediated cytotoxicity, inhibition of oncogenic drivers.

Marks et al. Curr Oncol Rep 2023

Monoclonal Antibody

HER2: Trastuzumab Deruxtecan (T-DXd)

- T-DXd: HER2-targeted ADC of trastuzumab (anti-HER2 mAb) conjugated to deruxtecan (DXd) via cleavable linker ٠ with DAR of 8
- Elicits significant bystander effect, supporting use in tumors with heterogeneous HER2-expression. ٠

DESTINY-Lung01

- *HER2-mutated:* ORR 55%, mOS 17.8mo, mPFS 8.2mo, mDOR 9.3mo. ٠
- HER2 overexpression: ORR 34%, mOS 11.2mo, mPFS 6.7mo, mDOR 6.2mo. ٠

Smith et al. ASCO 2020; Li et al. NEJM 2021; Smit et al. ESMO 2022

T-DXd in advanced *HER2*-mutated NSCLC – Phase 2 DESTINY-Lung02 Trial

Primary Endpoint T-DXd 5.4 mg/kg Confirmed ORR by BICR Q3W N = 102Secondary Endpoints Confirmed ORR by INV R N = 152DoR by BICR and INV 2:1 DCR by BICR and INV PFS by BICR and INV T-DXd 6.4 mg/kg OS Q3W Safety N = 50

Study Design

Patients and investigators were blinded to the dose level

Key Eligibility Criteria

- Metastatic HER2m NSCLC
- ≥1 prior anticancer therapy (2L+), including platinumbased chemotherapy
- Measurable disease per RECIST v1.1
- ECOG PS of 0 or 1

Stratification Factor:

Prior anti–PD-(L)1 treatment

Janne et al. WCLC 2020

Comparable efficacy observed at both T-DXd doses in DESTINY-Lung02

Response Assessment by BICR	T-DXd 5.4 mg/kg Once Every 3 Weeks (n = 102)	T-DXd 6.4 mg/kg Once Every 3 Weeks (n = 50)
Confirmed ORR, No. (%)	50 (49.0)	28 (56.0)
95% CI	39.0 to 59.1	41.3 to 70.0
Best confirmed overall response, No. (%)		
CR	1 (1.0)	2 (4.0)
PR	49 (48.0)	26 (52.0)
SD	45 (44.1)	18 (36.0)
PD	4 (3.9)	2 (4.0)
Nonevaluable ^a	3 (2.9)	2 (4.0)
DCR, No. (%)	95 (93.1)	46 (92.0)
95% CI	86.4 to 97.2	80.8 to 97.8
DoR, months, median (95% CI)	16.8 (6.4 to NE)	NE (8.3 to NE)
TTIR, months, median (range)	1.8 (1.2-7.0)	1.6 (1.2-11.2)
Follow-up, months, median (range)	11.5 (1.1-20.6)	11.8 (0.6-21.0)

Goto et al J Clin Oncol 2023; Janne et al. WCLC 2023

Favorable toxicity of T-DXd at 5.4 mg/kg compared to 6.4 mg/kg dose in DESTINY-Lung02

	T-DXd 5.4 mg/kg 0 (n = 101)	T-DXd 5.4 mg/kg Once Every 3 Weeks $(n = 101)$, No. (%)		Once Every 3 Weeks , No. (%)
Preferred Term	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3
Nausea	68 (67.3)	4 (4.0)	41 (82.0)	3 (6.0)
Neutropenia	43 (42.6)	19 (18.8)	28 (56.0)	18 (36.0)
Fatigue	45 (44.6)	8 (7.9)	25 (50.0)	5 (10.0)
Decreased appetite	40 (39.6)	2 (2.0)	25 (50.0)	2 (4.0)
Anemia	37 (36.6)	11 (10.9)	26 (52.0)	8 (16.0)
Vomiting	32 (31.7)	3 (3.0)	22 (44.0)	1 (2.0)
Constipation	37 (36.6)	1 (1.0)	16 (32.0)	0
Leukopenia	29 (28.7)	5 (5.0)	17 (34.0)	8 (16.0)
Thrombocytopenia	28 (27.7)	6 (5.9)	14 (28.0)	5 (10.0)
Diarrhea	23 (22.8)	1 (1.0)	18 (36.0)	2 (4.0)
Alopecia	22 (21.8)	0	17 (34.0)	0
Transaminases increased	22 (21.8)	3 (3.0)	10 (20.0)	0

Adjudicated Drug-Related ILD

Adjudicated as drug- related ILD	T-DXd 5.4 mg/kg N = 101	T-DXd 6.4 mg/kg N = 50
Any grade, n (%)	13 (12.9)	14 (28.0)
Grade 1	4 (4.0)	4 (8.0)
Grade 2	7 (6.9)	9 (18.0)
Grade 3	1 (1.0)	0
Grade 4	0	0
Grade 5	1 (1.0)	1 (2.0)

 Based on these efficacy and safety data, T-DXd 5.4 mg/kg q3w was granted accelerated FDA approval in Aug 2022 for the treatment of advanced HER2-mutated NSCLC after progression on prior therapy.

Goto et al J Clin Oncol 2023; Janne et al. WCLC 2023

Will T-DXd eclipse platinum-doublet chemotherapy (+/- immunotherapy) in the frontline?

Phase 3 DESTINY-Lung04 Trial (NCT05048797)

Patient population (N≈264)

- Unresectable, locally advanced (not amenable to curative therapy), or metastatic nonsquamous NSCLC with *HER2* exon 19 or 20 mutations^a
- Naive to systemic therapy in the locally advanced or metastatic setting
- No known other targetable oncogenic mutations/alterations

- ^b Crossover is not permitted.
- ^c Investigator's choice of cisplatin or carboplatin.

Li et al. ASCO 2023

Primary Endpoint: PFS

TROP2 & NSCLC

- Cell surface signal transducer expressed in >90% NSCLC.
- Associated with poor prognosis in multiple tumor types, including NSCLC.

Humanized anti-TROP2 Deruxtecan lgG1 mAb Linker for SN-38 Hydrolyzable linker for payload release High drug-to-antibody ratio (7.6:1) **Cleavable Tetrapeptide-Based Linker Topoisomerase I Inhibitor Payload** SN-38 payload (DXd) · Metabolite of topisomerase I inhibitor **Designed With 7 Key Attributes:** SN-38 more potent than Payload mechanism of action: Humanized anti-Trop-2 antibody parent compound, irinotecan Stable linker-payload topoisomerase I inhibitor Directed toward Trop-2, an epithelial antigen expressed on · High potency of payload Tumor-selective cleavable linker many solid cancers Optimized DAR ≈4 Bystander antitumor effect Trop-2, trophoblast cell surface antigen-2. · Payload with short systemic half-life

Datopotamab Deruxtecan (Dato-DXd)

Meric-Bernstsein et al. ASCO 2021; Saxena et al. ASCO 2020

Sacituzumab Govitecan

Dato-DXd in previously treated advanced NSCLC – Phase 3 TROPION-Lung01 Trial

Key Eligibility Criteria

No prior docetaxel

Without actionable genomic alterations^a

 1 or 2 prior lines, including platinum CT and anti–PD-(L)1 mAb therapy

With actionable genomic alterations

- Positive for EGFR, ALK, NTRK, BRAF, ROS1, MET exon 14 skipping, or RET
- 1 or 2 prior approved targeted therapies + platinum-based CT, and ≤1 anti–PD-(L)1 mAb

Stratified by: histology,^b actionable genomic alteration,^c anti–PD-(L)1 mAb included in most recent prior therapy, geography^d

Enrollment period: 19 February 2021 to 7 November 2022.

BICR, blinded independent central review; CT, chemotherapy; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; mAb, monoclonal antibody; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PD-(L)1, programmed cell death 1 (ligand 1); PFS, progression-free survival; Q3W, every 3 weeks; R, randomized.

^aPatients with KRAS mutations in the absence of known actionable genomic alterations are eligible; must meet prior therapy requirements for patients without actionable genomic alterations. ^bSquamous vs non-squamous. ^cPresence vs absence. ^dUnited States/Japan/Western Europe vs rest of world.

Ahn et al. ESMO 2023

Phase 3 TROPION-Lung01 – significant improvement in PFS, but will it be clinically meaningful?

Progression-Free Survival: ITT

Docetaxe

Benefit of Dato-DXd in patients with genomic driver alterations – Phase 2 TROPION-Lung05 study

Response per BICR	All treated patients (N=137)	Patients with <i>EGFR</i> mutations (N=78)	Patients with <i>ALK</i> rearrangement (N=34)
ORR confirmed, n (%) [95% Cl]	49 (35.8) [27.8-44.4]	34 (43.6) [32.4-55.3]	8 (23.5) [10.7-41.2]
Median DOR (95% CI), months	7.0 (4.2-9.8)	7.0 (4.2-10.2)	7.0 (2.8-8.4)
DCR confirmed, n (%) [95% Cl]	108 (78.8) [71.0-85.3]	64 (82.1) [71.7-89.8]	25 (73.5) [55.6-87.1]
Median PFS, (95% CI), months	5.4 (4.7-7.0)	5.8 (5.4-8.3)	4.3 (2.6-6.9)

BOR: In the overall population (N=137), 4 patients (3%) achieved a CR and 45 (33%) achieved a PR

EGFR subset: Among patients with sensitizing or T790M mutations (N=68), the ORR was 49.1% in those previously treated with osimertinib

Best Percent Change From Baseline in Sum of Diameters of Target Lesions

Percent Change From Baseline in Sum of Diameters of Target Lesions in Patients With Confirmed CR/PR

Paz-Ares et al. ESMO 2023

First-line efficacy of TROP2-targeted ADCs

TROPION-Lung02: Dato-DXd +

durvalumab +/- carboplatin

HER3 & NSCLC

- HER3 is a partner with HER2 hetero-dimerization and subsequent PI3K/AKT signalling.
- Expressed in ~83% NSCLC, associated with poor prognosis.
- Upregulated expression observed in *EGFR*-mutated NSCLC.
- HER3-DXd: anti-HER3 mAb conjugated to DXd via cleavable linker with DAR 8.

Jänne et al. ASCO 2021; Yu et al. WCLC 2023

Phase 2 HERTHENA-Lung01 Trial: Efficacy of subsequent line HER3-DXd in *EGFR*m NSCLC across mechanisms of resistance

Yu et al. J Clin Oncol 2023

Telisotuzumab vedotin (Teliso-V) in advanced NSCLC w/ MET overexpression

- MET alterations are seen *de novo* and as acquired mechanisms of resistance in driver+ NSCLC. ٠
- Teliso-V: anti-cMET mAb conjugated to MMAE payload via cleavable linker w/ DAR ~3.1. ٠

Teliso-V in EGFR wt NSCLC w/ c-MET

Teliso-V + osimertinib after osimertinib failure in EGFRm NSCLC w/ c-MET overexpression

Best Percentage Change in Target Lesion Size (per Investigator)

Not just adenocarcinoma! Early efficacy of B7-H3-directed Ifinatamab Deruxtecan (I-DXd) in small-cell and squamous lung cancer

- B7-H3 transmembrane protein overexpressed in solid tumors.
- I-DXd: anti-B7-H3 mAb conjugated to DXd payload via cleavable linker w/ DAR 4.

Patel et al. ESMO 2023

Intracranial efficacy observed for select ADCs in NSCLC

T-DXd – pooled DESTINY-Lung01, -Lung02

HER3-DXd – HERTHENA-Lung01

Responses by CNS BICR	All patients with baseline BM by CNS BICR (n=95)	Patients whose baseline BM had not been irradiated (n=30)
CNS cORR, n (%) [95% CI]	19 (20.0) [12.5, 29.5]	10 (33.3) [17.3-52.8]
CR, n (%)	15 (15.8)	9 (30.0)
PR, n (%)	4 (4.2)	1 (3.3)
SD/non-CR/non-PD, n (%)	57 (60.0)	13 (43.3)
PD, n (%)	13 (13.7)	4 (13.3)
NE, n (%)	6 (6.3)	3 (10.0)
CNS DCR (95% CI), %	80.0 (70.5, 87.5)	76.7 (57.7-90.1)
CNS DOR, median (95% CI), mo	9.2 (8.1-11.1)	8.4 (5.8-9.2)
Spapshot data cutoff 18 May 2023		

Median study follow-up, 18.9 (range, 14.9-27.5) months.

Li et al. ESMO 2023; Johnson et al. ESMO 2023

Intracranial efficacy observed for select ADCs in NSCLC

Blood <u>Brain</u> Barrier ≠ Blood <u>Tumor</u> Barrier

Mair et al. Nat Rev Clin Oncol 2023

Management of unique ADC-related toxicities Antibody **On-target toxicities** Payload Rash, mucositis Bleeding Mechanism of action Cardiotoxicity Rash, dysgeusia HER2 **Tissue factor** Nectin 4 Trop2 **Microtubule inhibitors Topoisomerase I inhibitors** • DM1: ↑ Diarrhoea ↑ Thrombocytopenia, hepatotoxicity • DM4: ↑ Ocular toxicity • MMAE: Binding to Fc receptors on immune cells ↑ Peripheral Calicheamicins neuropathy, Off-target Duocarmycins Immune myelotoxicity toxicities activation Pyrrolobenzodiazepines • MMAF: ↑ Ocular toxicity Payload potency Fc Drug-to-antibody ratio receptor Toxicity Immune cell

Tarantino et al. Nat Rev Clin Oncol 2023

Clinical Management of T-DXd-related ILD

AUSTIN 2024

- Observed across studies of ADCs with DXd-containing payloads.
- Incidence of all-grade ILD ~15% in pooled data for T-DXd in solid tumors.
 - ≥G3 Incidence: ~3.5%.
 - Median time to onset: 5.4mo.
- Management pearls:
 - If suspected, <u>STOP</u> T-DXd and promptly initiate prednisone ~1mg/kg/d.
 - Differential Dx: infection, progression, other ILD/pneumonitis.
 - Work-up: High res Chest CT, pulm consult, bronch.
- Can I re-initiate T-DXd?
 - Data limited.
 - Can consider for case of grade 1 (asymptomatic) ILD.
 - Generally not recommended if grade 2+.

Tarantino et al. JAMA Onc 2021

The Multiverse of Emerging ADCs

ITGB6

Tissue Factor

Mesothelin

AXL

PTK7

Nectin 4

FRα

Notable disappointments

Tusamitamab ravtansine (TUSA)

Press Release

sanofi

Sanofi announces end of program evaluating tusamitamab ravtansine after a 2L NSCLC Phase 3 trial did not meet a primary endpoint

- CARMEN-LC03 trial did not meet dual primary endpoint of improving progression-free survival; tusamitamab ravtansine clinical development program will be discontinued
- Sanofi reinforces commitment to broader oncology development program including CEACAM5-directed antibody drug conjugates (ADC) with additional anticipated trials

Ph3 EVOKE-01: sacituzumab govitecan vs docetaxel in previously treated adv NSCLC

Press Releases

January 22, 2024

Gilead Provides Update on Phase 3 EVOKE-01 Study

FOSTER CITY, Calif.--(BUSINESS WIRE)-- Gilead Sciences, Inc. (Nasdaq: GILD) today announced that the Phase 3 EVOKE-01 study did not meet its primary endpoint of overall survival (OS) in previously treated metastatic non-small cell lung cancer (NSCLC). EVOKE-01 is evaluating Trodelvy[®] (sacituzumab govitecan-hziy; SG) vs. docetaxel in patients with metastatic or advanced NSCLC that had progressed on or after platinum-based chemotherapy and checkpoint inhibitor therapy.

Biomarker selection to guide ADC development and identify target population <u>is critical!</u>

Concluding Remarks

- ADCs are an emerging class of anti-cancer therapeutic in the treatment of advanced lung cancer, with T-DXd carrying an accelerated approval for subsequent line therapy in advanced HER2-mutated NSCLC.
- Several agents carry FDA breakthrough designation, among which multiple phase 3 registrational studies are ongoing.
- Are ADCs the superhero we need? Time will tell. Important to address biomarker selection and identification of synergistic combinations.
- The ADC construct has the potential to unlock mechanistically novel therapeutic strategies.

THANK YOU!

