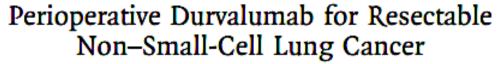


TARGETED PERIOPERATIVE THERAPY FOR EARLY-STAGE NSCLC

Gregory J. Riely

@RielyMD

April 20, 2024



Perioperative Nivolumab and Chemotherapy in Stage III Non–Small-Cell Lung Cancer

M. Provencio, E. Nadal, J.L. González-Larriba, A. Martínez-Martí, R. Bernabé, J. Bosch-Barrera, J. Casal-Rubio, V. Calvo, A. Insa, S. Ponce, N. Reguart, J. de Castro, J. Mosquera, M. Cobo, A. Aguilar, G. López Vivanco, C. Camps, R. López-Castro, T. Morán, I. Barneto, D. Rodríguez-Abreu, R. Serna-Blasco, R. Benítez, C. Aguado de la Rosa, R. Palmero, F. Hernando-Trancho, J. Martín-López, A. Cruz-Bermúdez, B. Massuti, and A. Romero

J.V. Heymach, D. Harpole, T. Mitsudomi, J.M. Taube, G. Galffy, M. Hochmair, T. Winder, R. Zukov, G. Garbaos, S. Gao, H. Kuroda, G. Ostoros, T.V. Tran, J. You, K.-Y. Lee, L. Antonuzzo, Z. Papai-Szekely, H. Akamatsu, B. Biswas, A. Spira, J. Crawford, H.T. Le, M. Aperghis, G.J. Doherty, H. Mann, T.M. Fouad, and M. Reck, for the AEGEAN Investigators*

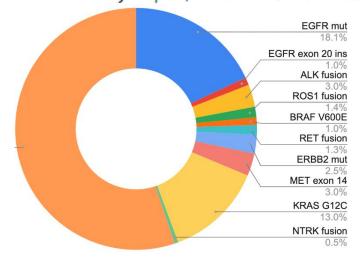
Perioperative Pembrolizumab for Early-Stage Non–Small-Cell Lung Cancer

H. Wakelee, M. Liberman, T. Kato, M. Tsuboi, S.-H. Lee, S. Gao, K.-N. Chen, C. Dooms, M. Majem, E. Eigendorff, G.L. Martinengo, O. Bylicki, D. Rodríguez-Abreu, J.E. Chaft, S. Novello, J. Yang, S.M. Keller, A. Samkari, and J.D. Spicer, for the KEYNOTE-671 Investigators*

Speaker: Gregory J. Riely, MD @TLCconference #TexasLung24

Perioperative Nivolumab and Chemotherapy in Stage III Non–Small-Cell Lung Cancer

Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer



M. Provencio, E. Nada arriba, A. Martínez-Martí, R. Bernabé, .L. Gonzaik Casal-Rubio, V J. Bosch-Barrera, vo, A. Insa, S. Ponce, N. Reguart, ilar, G. López Vivanco, C. Camps, J. de Castro, J. Mo uera, 🗖 🔁 🖪. A. A odríguez-Abreu, R. Serna-Blasco, R. López-Castro, 7 Morán, I arneto, D. R. Benítez, C. Juado A a Kosa, R. almero, F. Hernando-Trancho, J. Martín-Lóp Cruz-Bermúd Z, B. Massuti, and A. Romero

J.V. Heymach, D. Harpole, T. Litsudomi, J. Taube, G. Galffy, M. Hochmair, T. Winder, R. Zukov, G. Gobaos, S. Gag, H. Juroda, G. Ostoros, T.V. Tran, J. You, K.-Y. Lee, L. Anto uzzo ZO J. Para-Szelely, H. Akamatsu, B. Biswas, A. Spira, J. Crawford, H.T. Leggi, Aperghip, G.J. Doherty, H. Mann, T.M. Fouad, and M. R. J., for the AFLEAN Investigators*

Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer

H. Wakelee, M. Liberman, T. Kato, M. Tsuboi, S.-H. Lee, S. Gao, K.-N. Chen, C. Dooms, M. Majem, E. Eigendorff, G.L. Martinengo, O. Bylicki, D. Rodríguez-Abreu, J.E. Chaft, S. Novello, J. Yang, S.M. Keller, A. Samkari, and J.D. Spicer, for the KEYNOTE-671 Investigators*

FOMO?

Evaluation of Adjuvant Osimertinib

Patients with completely resected stage* IB, II, IIIA NSCLC, with or without adjuvant chemotherapy†

Key inclusion criteria:

≥18 years (Japan / Taiwan: ≥20)

WHO performance status 0 / 1

Confirmed primary non-squamous NSCLC

Ex19del / L858R[‡]

Brain imaging, if not completed pre-operatively

Complete resection with negative margins§

Max. interval between surgery and randomization:

- 10 weeks without adjuvant chemotherapy
- 26 weeks with adjuvant chemotherapy

Stratification by:
stage (IB vs II vs IIIA)
EGFRm (Ex19del vs L858R)
race (Asian vs non-Asian)

Randomization
1:1
(N=682)

Placebo,
once daily

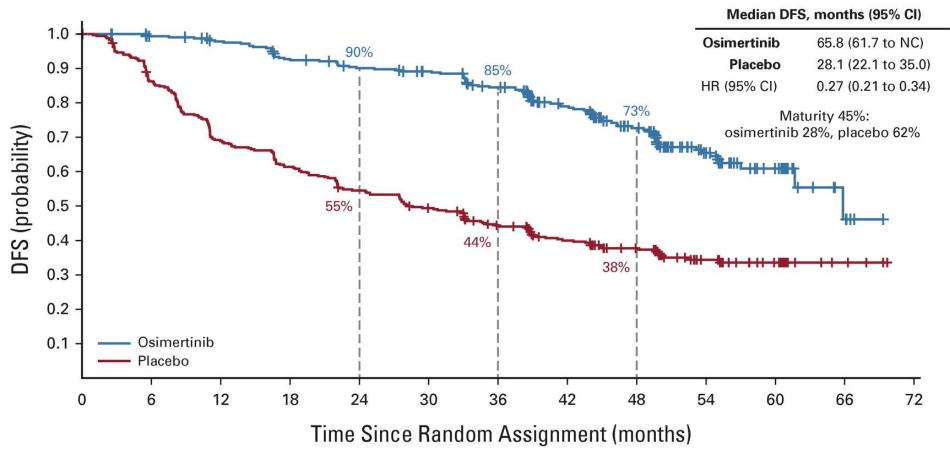
Planned treatment duration: 3 years

Treatment continues until:

- Disease recurrence
- Treatment completed
- Discontinuation criterion met

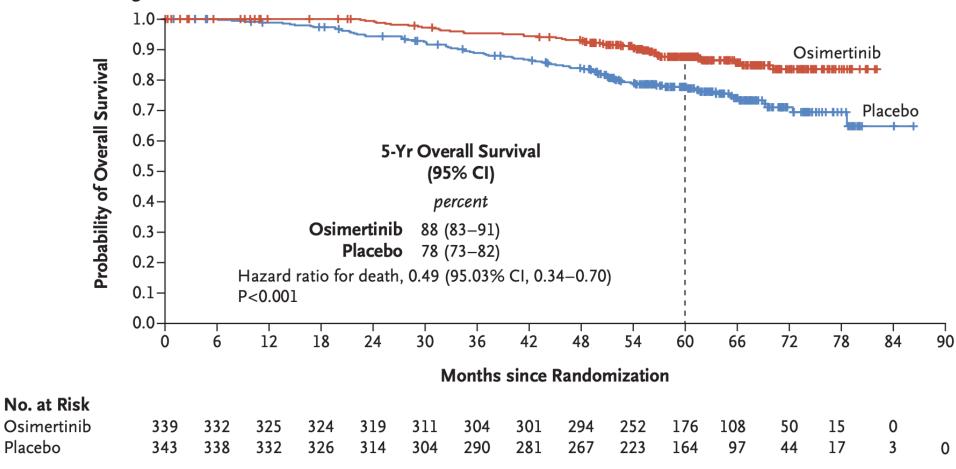
Follow up:

- Until recurrence: Week 12 and 24, then every 24 weeks to 5 years, then yearly
- After recurrence: every 24 weeks for 5 years, then yearly


Endpoints

- Primary: DFS, by investigator assessment, in stage II/IIIA patients; designed for superiority under the assumed DFS HR of 0.70
- Secondary: DFS in the overall population[¶], DFS at 2, 3, 4, and 5 years, OS, safety, health-related quality of life

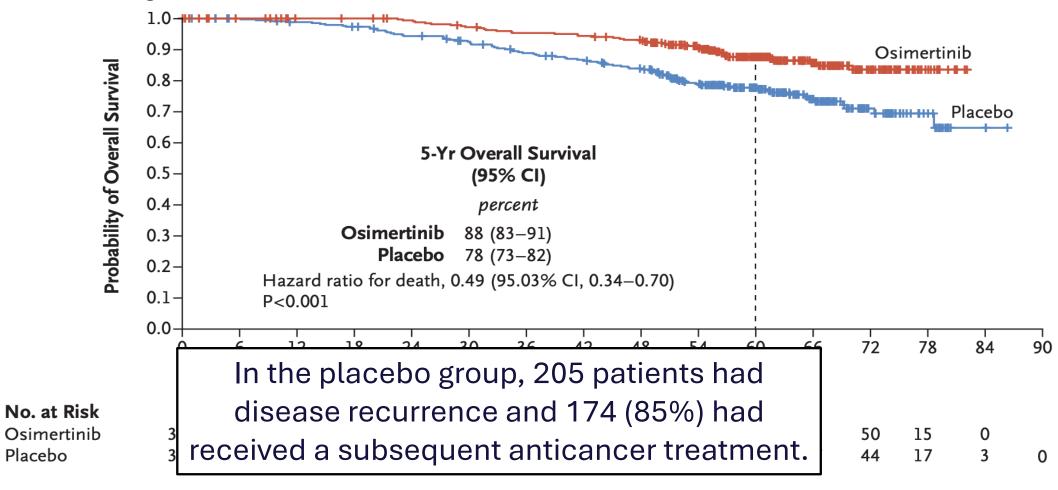
3 years of osimertinib improves disease-free survival


Herbst et al, JCO 2023

3 years of osimertinib improves survival

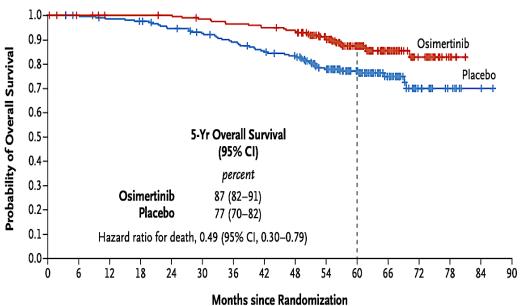
Patients with Stage IB to IIIA Disease

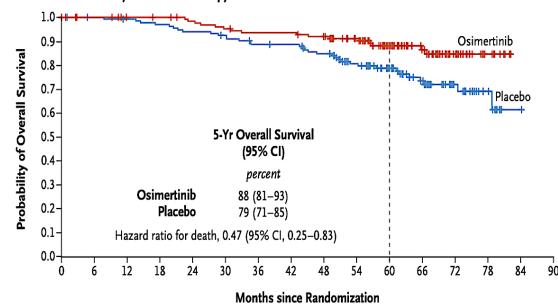
Tsuboi et al, NEJM 2023


Placebo

3 years of osimertinib improves survival

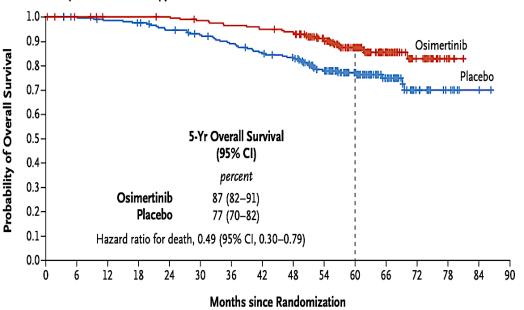
Patients with Stage IB to IIIA Disease

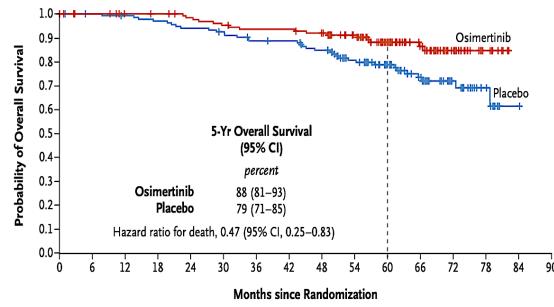

Tsuboi et al, NEJM 2023


Do these patients still need chemo?

A Patients Who Received Adjuvant Chemotherapy

Patients Who Did Not Receive Adjuvant Chemotherapy


Tsuboi et al, NEJM 2023

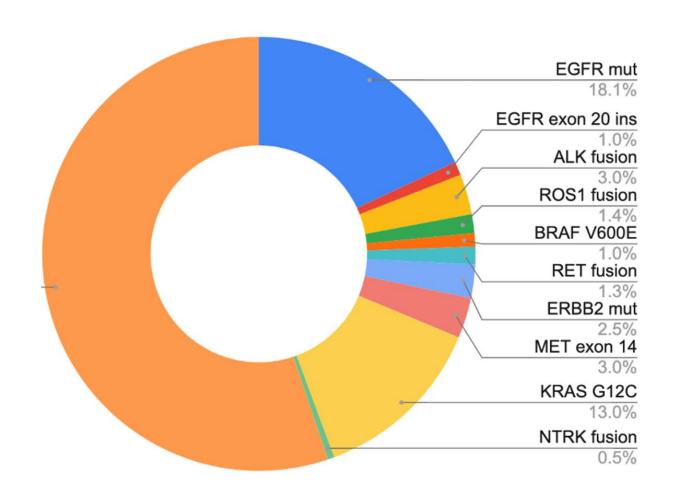

Do these patients still need chemo?

Patients Who Did Not Receive Adjuvant Chemotherapy

But, this is a mix of stages, so the "no chemotherapy" group, had more patients with Stage Ib

Tsuboi et al, NEJM 2023

Among patients with Stage II-III NSCLC...best survival comes in those who get chemo AND osimertinib



Treatment	5-year OS	
No Chemotherapy/placebo	66%	
Chemotherapy/placebo	75%	
No Chemotherapy/ 3 yrs osimertinib	80%	
Chemotherapy/3 yrs osimertinib	87%	

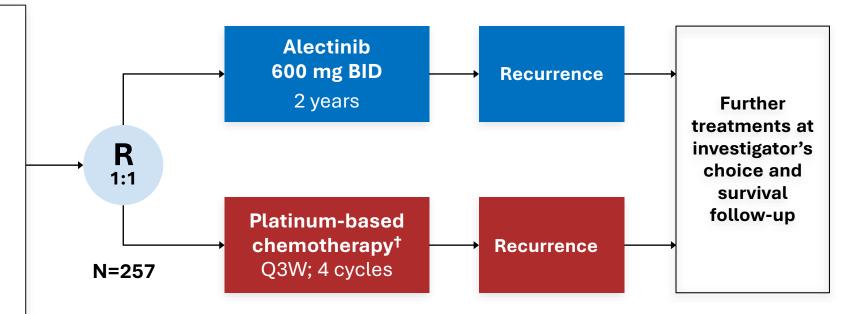
From Supplementary Figure S4, Tsuboi et al, NEJM 2023

What about the other targets?

Evaluation of Adjuvant Alectinib

Resected Stage IB (≥4cm)-IIIA ALK+ NSCLC

per UICC/AJCC 7th edition


Other key eligibility criteria:

- ECOG PS 0–1
- Eligible to receive platinum-based chemotherapy
- Adequate end-organ function
- No prior systemic cancer therapy

Stratification factors:

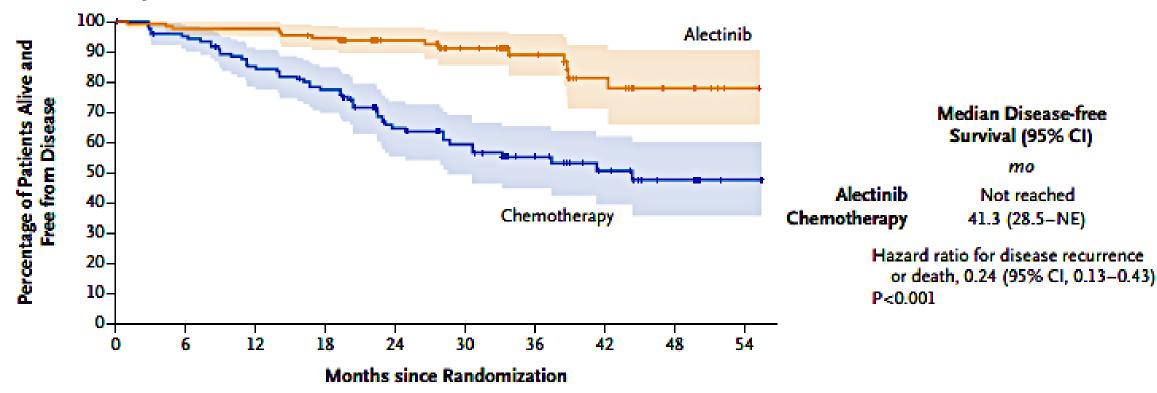
Stage: IB (≥ 4cm) vs II vs IIIA

Race: Asian vs non-Asian

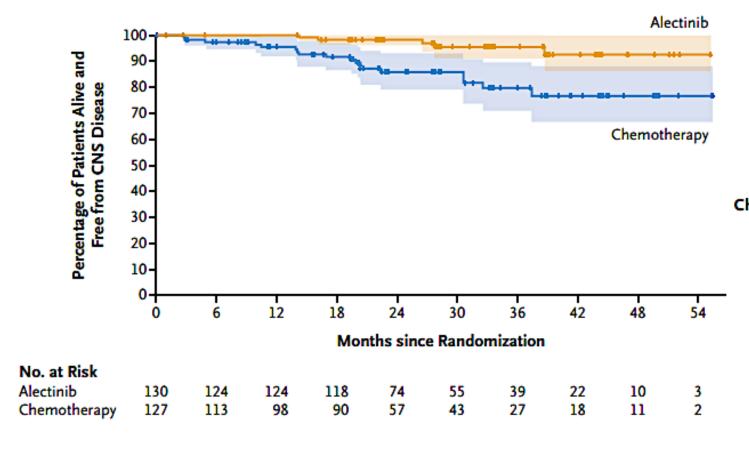
Primary endpoint

- DFS per investigator,[‡] tested hierarchically:
 - Stage II–IIIA → ITT (Stage IB–IIIA)

False dichotomy!


Wu et al, NEJM 2024

2 years of Alectinib improves disease-free survival

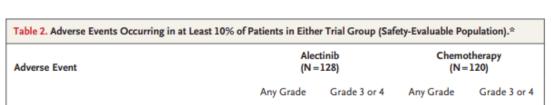

Wu et al, NEJM 2024

Gregory J. Riely, MD Speaker:

2 years of Alectinib improves CNS disease-free survival

CNS Disease–free Survival (95% CI) at 24 Months

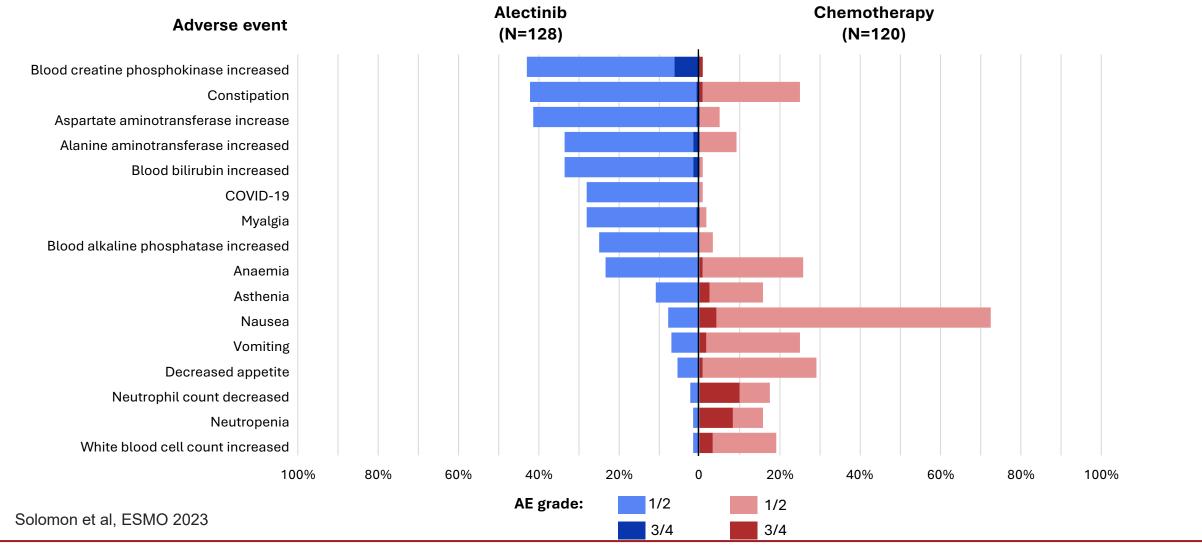
percent


Alectinib 98.4 (96.1–100) Chemotherapy 85.8 (78.8–92.8)

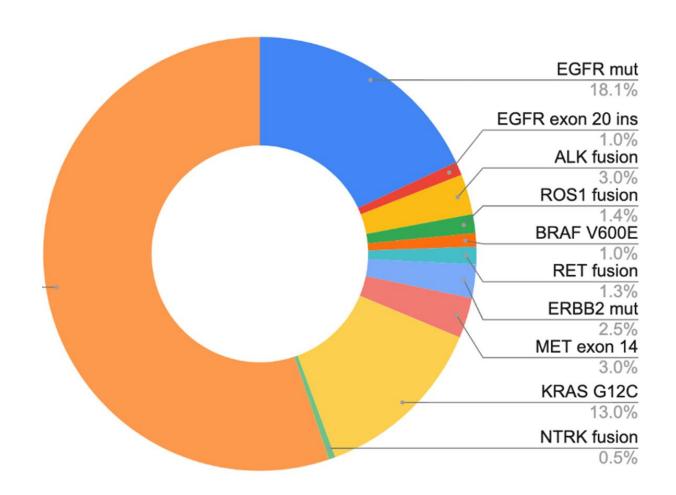
Hazard ratio for CNS disease recurrence or death, 0.22 (95% CI, 0.08-0.58)

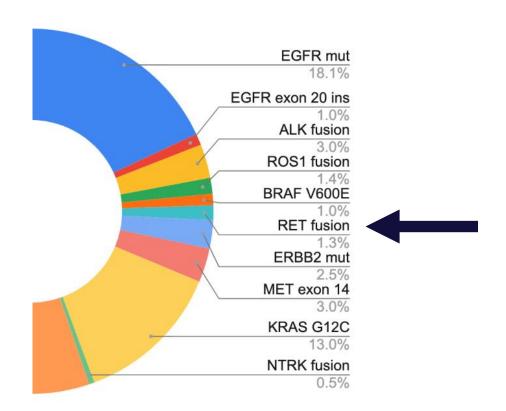
Wu et al, NEJM 2024

Adjuvant Alectinib: Adverse events


Adverse Event	Alectinib (N = 128)		Chemotherapy (N = 120)			
	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4		
		number of patients (percent)				
Any adverse event	126 (98.4)	38 (29.7)	112 (93.3)	37 (30.8)		
Nausea	10 (7.8)	0	87 (72.5)	5 (4.2)		
Creatine kinase increased	55 (43.0)	8 (6.2)	1 (0.8)	1 (0.8)		
Constipation	54 (42.2)	1 (0.8)	30 (25.0)	1 (0.8)		
Aspartate aminotransferase increased	53 (41.4)	1 (0.8)	6 (5.0)	0		
Alanine aminotransferase increased	43 (33.6)	2 (1.6)	11 (9.2)	0		
Blood bilirubin increased	43 (33.6)	2 (1.6)	1 (0.8)	0		
Decreased appetite	7 (5.5)	0	35 (29.2)	1 (0.8)		
Covid-19	37 (28.9)	0	1 (0.8)	0		
Myalgia	36 (28.1)	1 (0.8)	2 (1.7)	0		
Anemia	30 (23.4)	0	31 (25.8)	1 (0.8)		
Vomiting	9 (7.0)	0	30 (25.0)	2 (1.7)		
Alkaline phosphatase increased	32 (25.0)	0	4 (3.3)	0		
White-cell count decreased	2 (1.6)	0	23 (19.2)	4 (3.3)		
Neutrophil count decreased	3 (2.3)	0	21 (17.5)	12 (10.0)		
Asthenia	14 (10.9)	0	19 (15.8)	3 (2.5)		
Neutropenia	2 (1.6)	0	19 (15.8)	10 (8.3)		
Creatinine increased	19 (14.8)	1 (0.8)	6 (5.0)	0		
Cough	19 (14.8)	1 (0.8)	4 (3.3)	0		
Fatigue	18 (14.1)	1 (0.8)	16 (13.3)	2 (1.7)		
Rash	18 (14.1)	1 (0.8)	7 (5.8)	0		

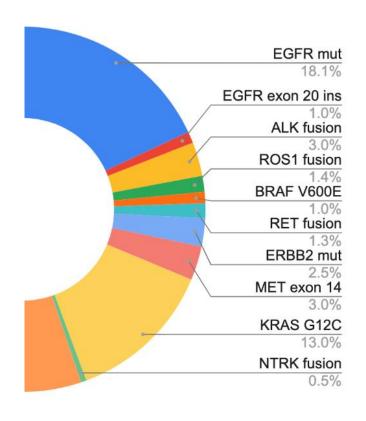
Modified from Wu et al, NEJM 2024

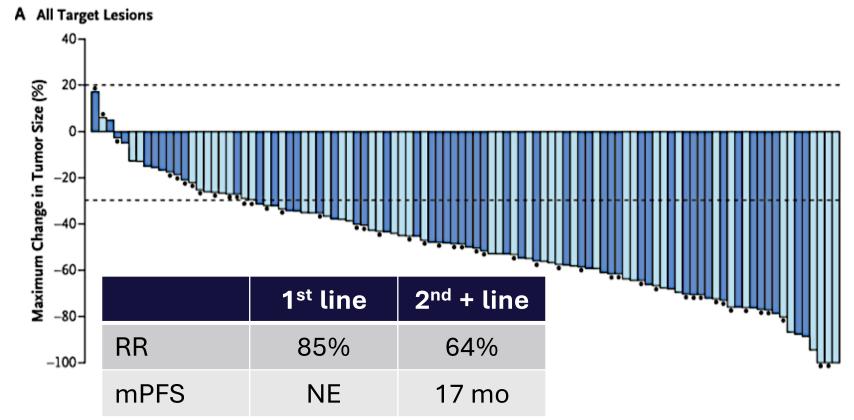

Adjuvant Alectinib: Adverse events



What about the other targets?

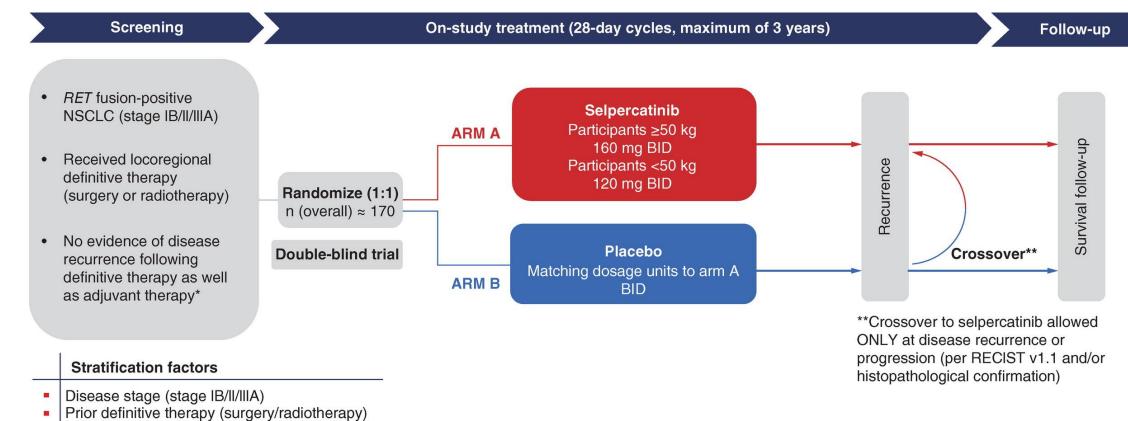
RET positive NSCLC - selpercatinib




RET positive NSCLC - selpercatinib

Previous anti–PD-1 or anti–PD-L1 therapy

- No previous anti–PD-1 or anti–PD-L1 therapy
- Previous multitargeted kinase inhibitor



Drilon et al, NEJM 2020

RET targeting in the adjuvant setting

Tsuboi et al, Future Oncology 2022

"participants must have undergone available anticancer therapy (including chemotherapy or durvalumab) or not be suitable for it"

Conclusions

- For patients with resected stage II-III, EGFR mutant NSCLC, 3 years of adjuvant osimertinib improves disease-free survival, CNS-disease-free survival, and overall survival for patients with resected stage II-III NSCLC.
- For patients with EGFR mutant NSCLC, <u>outcomes are better if patients</u> <u>also receive chemotherapy</u>.
- For patients with resected stage II-III ALK positive NSCLC, 2 years of adjuvant alectinib improves disease-free survival and CNS-disease-free survival.
- Years of therapy leads to years of toxicities

Open questions

- How does chemotherapy contribute?
- When do we invest the patient resources in these trials?
 - First in class or best in class?
 - After achieving some efficacy bar?
 - O What about rare targets?
- Do very early-stage patients benefit (i.e. stage IA)?
- How long should adjuvant therapy be given (2 years, 3 years, 5 years, forever)?
- How do we manage long-term toxicity in these patients?

